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Abstract. Bit vectors and bit operations are proposed for efficient
propositional inference. Bit arithmetic has efficient software and hard-
ware implementations, which can be put to advantage in Boolean sati-
sability procedures. Sets of variables are represented as bit vectors and
formulæ as matrices. Symbolic operations are performed by bit arith-
metic. As examples of inference done in this fashion, we describe ground
resolution and ground completion.

“It does take a little bit of inference.”

– Tony Fratto, Deputy Press Secretary, USA

1 Introduction

Boolean satisfiability, though NP-complete, is a problem that is solved on a
daily basis with real-life industrial instances comprising millions of variables
and clauses. See, for example, [18].

1.1 The Problem

Suppose B is a Boolean formula and p1, . . . , pv are its propositional variables.
The Boolean satisfiability (SAT) problem is to find an assignment of truth values
(0 and 1) to a subset of the variables, such that the formula becomes a tautology,
or else to determine that no such assignment exists, in which case the formula
is unsatisfiable.

Formulæ are often framed in clausal form. A literal is any variable pj or its
negation pj. A clause c is a (multi-) set of positive and negative literals, intending
their disjunction. A (clausal) formula C is a set or list of clauses, intending their
conjunction.

1.2 An Idea

Bit arithmetic enjoys efficient software and hardware implementations. These
can be put to great advantage in satisfiability procedures. Sets of variables can
be represented as bit vectors, rather than as (linked) lists, or tries. Formulæ
would be represented as matrices, rather than as linked lists or binary decision
diagrams [5]. Symbolic operations are, accordingly, replaced by bit arithmetic.
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1.3 Related Work

There has been considerable work on the use of reconfigurable hardware for SAT
solving in general or for individual instances (e.g. [24,22]). In contrast, here we
are interested in leveraging the native operations of binary hardware for the
problem.

1.4 This Paper

The use of bit operations on large bit arrays for the purpose of large-scale propo-
sitional inference, as elaborated here, appears to be novel.

The next section shows how formulæ are encoded as vectors of bits. As exam-
ples of the use of bit operations, the following two sections consider two impor-
tant families of propositional inference, namely, ground resolution and ground
completion. Ground resolution is the resolution rule for variable-free clauses,
as used for SAT in [8]. Ground completion is an inference rule for variable-free
equations, using equations from left-to-right to replace “equals-by-equals”. The
final two sections discuss aspects of the practicality of the suggestion.

2 Representation

A clause c can be represented by two bit vectors c

0[1: v] and c

1[1: v], where v

is the number of bits in the vector, c

0[j] = 1 iff the negative literal pj occurs
in c, and c

1[j] = 1 iff the positive literal pj occurs therein. Thus, a variable pk

(or literal pk) is identified with the vector containing a single 1 in position k

(or k + v, respectively). Let c also denote the 2v-bit-long concatenation of c

0

and c

1, symbolized c

0⌢
c

1, and c

∗ the reverse concatenation c

1⌢
c

0. To encode a
tautological clause “true”, one can add a bit in the 0th position, c[0], to clauses
c, and use ⊤ to abbreviate the corresponding vector p0.

The standard set operations will denote the corresponding bit-vector func-
tions. For example, ∩ represents logical-and and ∅ is the zero-vector, which
corresponds to the value false. So, if c

0 ∩ c

1 6= ∅, then c is tautological, as it
includes both a literal and its negation. Symmetric-difference (exclusive-or) is
⊕. Set difference can be obtained in two steps when it is not directly available:
x\ y = x∩y. We will let ‖c‖ count the number of ones (the “population count”)
in vector c. Inequalities of bit vectors treat the low-index bits as most significant.
It is customary to also use 0 and 1 for false and true, respectively.

A binomial equation e

L = e

R between Boolean monomials (products of
propositional variables) can likewise be represented as two bit vectors e

L[1: v]
and e

R[1: v], where e

L[j] = 1 iff the variable pj occurs in the left side e

L and
e

R[j] = 1 iff it occurs in the right side e

R. In this case, the most significant
bits e

L[0] and e

R[0] can conveniently be set to indicate the monomial 0 (false),
regardless of the values of other bits (thinking of the zero-bit as indicating a
0-factor). Thus, p0 represents the truth constant false, but so does any vector
with its most significant bit on. Accordingly, the truth constant true is denoted
by the zero-vector (empty monomial) ∅.
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A list C of n clauses c1, . . . , cn may be represented as a pair of n × (v + 1)
matrices, C

0 and C

1, where C

r[i, j] = 1 iff c

r
i [j] = 1 (for r = 0, 1). To refer to

the whole jth column, one can write C

r[∗, j] (r = 0, 1, or blank). All or half of
the ith row, C

r[i, ∗], is just c

r
i (r = 0, 1, or blank, for left half, right half, or both

halves, respectively). Similarly, a list of n Boolean equations may be represented
as a pair of matrices, C

L and C

R, for left and right sides of equations.

3 Resolution

A clause is empty, and hence unsatisfiable, if c = ∅ (that is, ‖c‖ = 0). A clause
is a unit if ‖c‖ = 1, which coerces the truth value of its one literal. A clause is
trivial (tautological), and may be deleted, if c

0∩c

1 6= ∅, since it disjoins a literal
and its complement. To delete a clause, we will set its (high-order) 0-bit to 1.
Two clauses c and d resolve on pk if c

∗ ∩ d = pk, for some (positive or negative)
literal pk, producing a new clause (c ∪ d) \ (pk ∪ p

∗

k). The resultant clause may
be empty or a unit, but resolving non-units yields a non-empty clause.

Resolution provers invariably include simplification stages, such as unit prop-
agation and subsumption, which we discuss next.

3.1 Unit Propagation

A unit clause c propagates and simplifies clause d if c

∗ ⊆ d, in which case the re-
sult is d

′ = d \ c

∗. If the result d

′ is empty (d = c

∗), the problem is unsatisfiable.
If the result is a unit, then d

′ can be used in the same fashion. Binary con-

straint propagation (BCP) is the repeated application of subsumption by units
and unit propagation – until no further simplifications are possible. BCP is a
central component of the Davis-Putnam-Logemann-Loveland backtracking SAT
procedure [7], and its modern incarnations. It is expensive (typically consuming
80–90% of the running time), but is not necessary for completeness (and can
significantly degrade proof search; see [11]).

Let n be the number of clauses, and let u[0: 2v] be a bit-vector of length
2v + 1. At the conclusion of the algorithm in Fig. 1, all the units obtained by
propagating the clauses of C will be marked in u. The n-step main loop repeats
at most v times. An empty clause ci means the problem is unsatisfiable. To
delete a row, we set ci := ⊤; it would be enough to let ci[0] := 1. The matrix
can be compacted by removing the deleted rows (at any juncture) and/or the
columns marked in u (after any complete pass).

3.2 Subsumption

Clause c subsumes clause d if c ⊆ d, in which case d is superfluous. For this to
be the case, we must have c ≤ d, as binary numbers, but this is an insufficient
condition. Using standard operations, c ⊆ d iff c ∪ d = d.

Subsumption is more expensive than unit propagation and should normally
be preceded by BCP. It can be implemented like sorting, with the addition of
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u := ∅

b := true

while b do

b := false

for i := 1, . . . , n do

if u ∩ ci = ∅

then ci := ci \ u∗

if ci = ∅ then fail

if ‖ci‖ = 1
then u := u ∪ ci

b := true

else ci := ⊤

Fig. 1. Binary constraint propagation

for i := 1, . . . , n − 1 do

if ci 6= ⊤ then

for j := i + 1, . . . , n do

if ci > cj

then if cj ⊆ ci

then ci := cj

cj := ⊤
else cj :=: ci

else if ci ⊆ cj

then cj := ⊤

Fig. 2. Subsumption

checking whether the smaller of any pair subsumes the larger, in which case, the
larger is deleted – for a cost of O(n lg n) vector-operations to check all clauses.
Deleted rows should be removed. For an n

2 version, à la selection sort, see Fig. 2.
Subsumption is often not cost-effective in standard implementations, but might
be in this context. (Satellite [3,12], interestingly, does use bit vectors to estimate
the applicability of subsumption.)

Other implementations of these algorithms, taking advantage of matrix op-
erations, are conceivable.

3.3 The Davis-Putnam Resolution Procedure

The original Davis-Putnam (DP) procedure resolves clauses, variable by vari-
able [8]. See Fig. 3. There are various heuristics for ordering the variables, such
as choosing the one that appears in the most clauses. Columns can be presorted
to reflect such policies. BCP can be incorporated, and perhaps subsumption,
taking into account that the literals pk and pk are removed with each iteration
on k.
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m := n

for k := 1, . . . , v do

n := m

for i := 1, . . . , n − 1 do

for j := i + 1, . . . , n do

if ci ∩ c∗j ⊂ (pk ∪ pk)
then m := m + 1

cm := (ci ∪ cj) \ (pk ∪ pk)
if cm = ∅ then fail

Fig. 3. Davis-Putnam resolution

m := 0
k := n

while k > m do

n := m

m := k

for i := 1, . . . , m do

for j := n + 1, . . . , m do

if eL
i ⊆ eR

j

then eR
j := eR

j \ eL
i ∪ eR

i

if eL
i ⊆ eL

j

then eL
j := eL

j \ eL
i ∪ eR

i

if eR
j > eL

j then ej := e∗j
else if eL

i ∩ eL
j 6= ∅

then k := k + 1
eL

k := eL
j \ eL

i ∪ eR
i

eR
k := eL

i \ eL
j ∪ eR

j

if eR
k > eL

k then ek := e∗k

Fig. 4. Knuth-Bendix completion

4 Completion

Knuth-Bendix completion [14], and its extensions, repeatedly finds overlaps be-
tween equations (using only the larger side of any equation), to infer new equa-
tions. (In contrast, paramodulation [23] looks at both sides of equations.) Equa-
tional reasoning provides an alternative inference paradigm to propositional rea-
soning, with equations in completion playing an analogous rôle to clauses in
resolution.

We are interested in the ground (variable-free) case of completion, where the
operations are associative and commutative [1,16,17]. As examples of completion
in the realm of Boolean formulæ, we will consider ground Horn-clause theories
and Gaussian elimination over Z2.
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b := true

while b do

b := false

for i := 1, . . . , n − 1 do

for j := i + 1, . . . , n do

if eL
i ⊆ eL

j

then eL
j := eL

j \ eL
i ∪ eR

i

if eR
j > eL

j then eL
j :=: eR

j

b := true

if eL
i ⊆ eR

j

then eR
j := eR

j \ eL
i ∪ eR

i

b := true

Fig. 5. Inter-reduction

4.1 Horn-Clause Completion

A clause is Horn if it has at most one positive literal. A Horn clause p0 ∨ ¬p1 ∨
· · ·∨¬pn is equivalent to the binomial equation p0p1 · · · pn = p1 · · · pn; a negative
Horn clause ¬p1∨· · ·∨¬pn is equivalent to the monomial equation p1 · · · pn = 0.
See [4] for details regarding such representations.

Two equations ei and ej are critical iff e

L
i ∩ e

L
j 6= ∅. The critical equation

(or critical pair) is e

L = e

R, where e

L := e

L
j \ e

L
i ∪ e

R
i and e

R := e

L
i \ e

L
j ∪ e

R
j .

Critical equations may need to be oriented. Knuth-Bendix (KB) completion
(or the analogous Gröbner basis construction [6]) is the repeated generation of
critical pairs, interleaved with inter-reduction.

In this manner, completion serves as the inference engine, generating critical
pairs from the equational representation of Horn clauses, as shown in Fig. 4.

4.2 Reduction

A major component of completion is simplification, akin to demodulation [23],
by which we mean using equations in one direction to “simplify” other equations
(with respect to some measure).

An oriented equation e

L = e

R is unitary and can be used to simplify in any
of the following three cases:

– Positive Unit. If e

R = ∅, then the equation signifies e

L = 1 (since we agreed
in Sect. 2 to interpret ∅ as truth). It follows that pi = 1 for every pi ∈ e

L.
Apply e

R = ∅ to a monomial m by removing the (superfluous) positive bits:
m := m \ e

R.
– Negative Unit. If ‖eL‖ = 1 and e

R[0] = 1, then pk = 0 for the pk ∈ e

L.
Apply pk = 0 by zeroing any monomial in which it appears: if m[k] then

m[0] := 1.
– Unit Equivalence. If ‖eL‖ = ‖eR‖ = 1 and e

L[0] = e

R[0] = 0, then pk = pj

for the pk ∈ e

L and pj ∈ e

R. Apply pk = pj by replacing occurrences of pk

with pj : if m[k] then m[j] := 1.
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i := 1
k := 1
while k ≤ v ∧ i ≤ n do

m := i

while m ≤ n ∧ ¬cm[k] do m := m + 1
if m ≤ n then

cm :=: ci

for j := 1, . . . , i − 1, m + 1, . . . , n do

if cj [k] then cj := cj ⊕ ci

i := i + 1
k := k + 1

Fig. 6. Gaussian elimination

The results of such unit simplifications can propagate as in resolution.
More generally, an equation e

L = e

R can be used to simplify a monomial m

provided all the variables in e

L appear in m, that is, when e

L ⊆ m. The rewrite

step is the assignment m := m \ e

L ∪ e

R. If we use the 0-bit to signify the term
0, as explained above, then reducing products to 0 works as expected.

The lexicographic ordering of monomials is ordinary bit-string inequality. An
equation c needs to reoriented if e

R
> e

L, which may transpire after reducing a
left side. Other orderings are possible.

To inter-reduce a system C of equations, applying all equations to all
equations, as much as possible, first sort C in ascending order according to
〈‖eR‖ − ‖eL‖, eL

, e1〉 and then apply the algorithm in Fig. 5. The idea is that
reducing with a “rewrite rule” ℓ → r decreases the binary value of the string
it is applied to by ‖ℓ‖ − ‖r‖, and, long range, one wants to maximize the de-
creases obtained with each reduction, so as to converge as quickly as possible.
This näıve program can presumably still require exponentially many vector oper-
ations, but hopefully much better algorithms for inter-reduction can be devised
(compare the non-commutative case [13,21]). One may prefer to limit reduction
to equations with few variables on the left.

4.3 Gaussian Elimination

A linear equation over Z2 takes the form P = 0, where P is an exclusive dis-
junction of some of the propositional variables p1, . . . , pv. (Since we are using ⊕,
coefficients are 0 or 1.)

We represent an equation P = 0 as a bit vector c of length v+1, where c[k] = 1
iff pk is a summand in P and p0 is the constant 1. Adding (or subtracting) a linear
equation c to d is just d := d ⊕ c. A standard quadratic (vn vector operations)
Gaussian elimination procedure is given in Fig. 6.

When (after elimination, say) ‖c‖ ≤ 2, the equation c is unitary and is of
one of the following three forms: pk = 0, pk = 1, or pk = pj , for some k ≥ 1 and
1 ≤ j 6= k.
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LOAD 0, ci0

OR 0, cj0

LOAD 2, ci0

AND 2, cj1

DIFF 0, 2

STORE 0, c0

LOAD 0, ci1

OR 0, cj1

LOAD 2, ci1

AND 2, cj0

DIFF 0, 2

STORE 0, c0

Fig. 7. A resolution step in an assembly language

4.4 Combining the Two

For non-Horn clauses, one needs also to incorporate negation in some form.
The BinLin representation of propositional formulæ, proposed in [9,10], uses a
combination of equations between monomials and linear equations over Z2 to
represent propositional formulæ in exclusive-or (Boolean ring) normal-form. It
provides an alternative to other propositional satisfiability procedures, whether
search-based, saturation-based, or hybrid intersection-based methods. In this for-
malism, variables and equations are added in a satisfiability-preserving fashion,
to obtain a set of binomial equations and a set of linear Boolean equations. The
binomials undergo inter-reduction and the linear equations undergo Gaussian
elimination. Unitary equations are propagated among both sets. This method,
too, can be implemented naturally within the framework proposed here.

5 Implementation

Most of the bit-vector operations used in the above sections are readily available
on digital computers. Some processors, even way back to the IBM Stretch, pro-
vide a hardware instruction for the number of ones in a machine word; in any
case, computing ‖c‖ requires only a few machine instructions [2, No. 169]. Most
operations are also available in many software languages (e.g. C). They are all
easy to implement in general-purpose or special-purpose hardware.

For example, resolving two single-word (or double-word – for machines with
double-word operations) clauses requires approximately 12 machine instructions.
Thus v variables require 12⌈v/w⌉ instructions on a w-bit machine. For example,
if w = 64 and v = 1000, fewer than 200 machine instructions are needed. See
Fig. 7. This should be contrasted with the large number of machine operations
used in a pointer-based implementation.

For large (but presumably sparse) vectors, (iterated) summary bits should
prove helpful. (The summary bit for a subvector x is 0 iff x = 0.) Column
operations, such as erasing all occurrences of a true propositional variable, may
be sped up by also maintaining transpose matrices [20].

Industrial-strength problems can easily involve hundreds of thousands of vari-
ables and millions of clauses. The storage requirements for a bit matrix of that
size is in the hundreds-of-gigabyte range. Given enough storage, full-fledged n lg n

subsumption would take a few minutes on a 5000 MIPS 64-bit machine.
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6 Discussion

Davis-Putnam resolution is a saturation-based methods for checking proposi-
tional satisfiability. The original set of clauses is satisfiable if and only if res-
olution terminates without having derived the empty clause. Similarly, Knuth-
Bendix completion derives the contradiction 1 = 0 if and only if the input clauses
are unsatisfiable. Thus, both methods (Figs. 3 and 4) repeatedly add rows to
the matrices of formulæ.

Saturation is often considered too costly in practice. Instead, a backtrack
search [7] – based on the clausal representation with unit propagation and sub-
sumption – can easily be built around the above procedures. One simple way to
keep track would be to mark rows of the matrix that are added or deleted with
the search level. (Instead of changing a row, one would delete and add.) After a
significant number of assignments, it may pay to compact the matrix.

Similarly, a recursive-learning intersection-based method [15,19], combining
limited saturation, generous simplification, and judicious search can be designed.

The algorithms given here are readily adaptable to highly parallel vector or
array architectures. Experiments with simulations are needed to evaluate their
practical feasibility.
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