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Abstract. A new class of game-theoretic models, the common feature of 

which is the presence of limited volume of information exchanges between active 

players, is considered. This makes it possible to describe more adequately the 

actions of the subjects of socio-economic processes. It is shown that considering 

such restrictions allows one to significantly expand the class of situations that 

can be adequately described using game theory in normal form. Possible ways to 

formalize the concept of "amount of information" based on the construction of 

Andrey Kolmogorov and a new formalization of the concept of the maximum 

guaranteed result are discussed. The theoretical review of the new results is car-

ried out considering the experience of using models and tools for ontological 

support in the field of decision making. The influence of the volumes of the initial 

data on the decision-making processes has been investigated. The application of 

the outlined ideas in the information theory of hierarchical systems, developed at 

the FRC IC RAS, is considered. The importance of considering limited amounts 

of data in applied decision support systems is emphasized. 

Keywords: Information Theory, Limited Amount of Data, Games in Normal 

Form, Theory of Hierarchical Games, Information Theory of Hierarchical Sys-

tems. 

1 Introduction 

The approach and language of game theory [1,2] are widely used in the world when 

creating decision support systems. 

The three constituent parameters of an active agent's decision-making are as follows: 

 goals of the agent, interests, motives, criteria for evaluating the results;

 a set of data, information about the state and actions of other subjects, as well as

about uncertain factors of the external environment, on the basis of which  he makes

decisions;

 methods of action, strategies of behavior based on the available data.

The importance of input data in game-theoretic models was already identified in the 

first works on game theory (for example, [1]). But in the transition to normal form, all 

informational aspects turned out to be “hidden” in the complex structure of strategies. 
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The strategy began to be presented as “elementary” objects, and information indicators 

went into the background. 

A certain return to information indicators occurred independently in the theory of 

metagames by N. Howard [3] and in the theory of hierarchical games by Yu. B. Germier 

[4]. But in these theories, the sets of player controls and indefinite factors, as a rule, 

were considered as infinite (most often it was assumed that these are compact subsets 

of Euclidean spaces). The sets of strategies of some players were viewed as complex, 

infinite-dimensional spaces. The use of such strategies implicitly involved the pro-

cessing of infinitely large amounts of data. 

The theory of hierarchical games considers the problem of information support op-

timizing for each player who benefits from having as much information as possible. 

However, a satiety effect can occur when increasing awareness beyond a certain limit  

does not provide additional benefits. This limit is rarely reached in most cases due to 

the large volume. 

Data processing requires time and resource costs that the existing classical models 

do not consider. The “content” of information in classical models was dete rmined by 

the “rules of the game”. Players cannot influence these rules. Costs aside, the best so-

lution is to use all available data. 

Therefore, in real conditions, it becomes necessary to explicitly consider the limita-

tions on the amount of the transmitted data in the models. But this requires solving a 

number of problems. 

2 Amount of Information 

Until recently, models that took into account somehow at least the restrictions on the 

amount of the transmitted information were investigated only in the works of V. S. 

Aliyev and A. F. Kononenko, see for example [5]. The authors considered two ways to 

limit the amount of information. In the first, a set of “acceptable” methods was set par-

ametrically, and the optimal one was selected from them. In the second, the amount of 

information was characterized by the topological dimension of the possible messages 

space. 

The problem in the first setting is successfully investigated by standard methods of 

analysis of hierarchical games. But the solutions found for such a problem are ex-

tremely irregular. First, the solution in a typical situation can vary greatly with arbitrar-

ily small changes in the parameters of the model. And secondly, discontinuous func-

tions, Peano curves and other set-theoretic “monsters” appear in the structure of the 

solution itself. This is due to the inadequate way of setting restrictions on the amount 

of the transmitted information [6–7]. 

The problem in the second setting was also solved under very general assumptions 

[8] with a very beautiful mathematical result, which we will consider below. But, and

this method does not quite adequately describe the phenomenon under study.

One of the works of A. N. Kolmogorov on information theory [9] was called “Three 

approaches to the definition of the concept of “amount of information”. And this work 

is still relevant today. Each of the three approaches has limitations and can only be 

compared at an informal level. 
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Game-theoretic models are more structured than models of information theory, 

therefore, it was possible to identify not three, but eight meaningful statements (includ-

ing those already described). The most studied setting is in which the amount of the 

transmitted information is characterized by the power of the possible messages set. It 

is easy to find out that the optimal result for a typical case can be obtained for finite 

sets of messages, so the amount of information can be measured simply by a natural 

number. This allows us to identify a number of interesting qualitative features and ex-

pand the class of models available for research. Let's dwell on some of them. 

3 Formalization Method 

Let us describe the formalization of the simplest version of a two-person game with 

feedback. 

Consider a two-person game , , , ,U V g h   where U  and V are compact metric 

spaces, g  and h  are  continuous functions from U V  set of real numbers. Elements 

of sets U  and V  are interpreted as controls of the first and second players. Their in-

terests are described by the desire to maximize the values of functions g  and h  re-

spectively. 

Let us consider the following interaction scheme for players. The first player has the 

right to ask his partner  n  questions about the chosen control v V  and get truthful 

answers to them. Each of these questions must have “yes” or “no” answer. The answer 

“yes” will be coded with one, and the answer "no" with zero. The first player makes the 

final choice of his control after receiving answers to his questions. But he pre-selects a 

list of questions and a plan of his actions with all possible answers. This information 

becomes known to the second player. Under these conditions, the second player can 

unambiguously correlate his gain with the choice of his control, and therefore his be-

havior becomes predictable: he will choose controls according to the criterion of the 

maximum of his profit. Uncertainty remains only when there are several maximu m 

points. We will assume that the first player is careful with respect to this uncertainty 

and seeks to maximize his guaranteed result. 

Let us give precise definitions. Each system of n  questions of the type under con-

sideration corresponds to a set of 2n  subsets 

     0 1 0 1 0 1

1 1 2 2, , , ,..., ,n nX X X X X X (1) 

of space V , paired. The set 
1

tX includes those and only those controls v V of the 

second player when choosing which the question with a number t  should be answered 

“yes”. The set 
0

tX contains those controls that correspond to the answer "no" to the 

question numbered t . Of course, the conditions must be met 

0 1 0 1, , 1,..., .t t t tX X X X V t n   (2) 
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Each Boolean vector  1 2, ,..., nr r r r  from the set  0,1
n

N   can be associated with 

the set 
1

.t

n
rr

t

t

X X


  The first player can and should choose control ru U  having re-

ceived answers to his questions  1 2, ,..., nr r r . Thus, the strategy of the first player is

determined by specifying 2n  of sets (1) satisfying conditions (2) and 2nm   of con-

trols ,ru U r N  .  

If the first player has fixed his strategy of this kind, and the second player chooses

control v V , then the players will receive the winnings ( , )rg u v  and ( , )rh u v  accord-

ingly, where the answer r  is uniquely  determined by the condition rv X . 

It is convenient to define the function :P V N by the condition ( )P v r , if

rv X  and such function 
* :u N U , that 

*( ) ru r u . Then the strategy of the first 

player can be identified with a pair of functions  *,u P , and the payoffs of the players

will be determined by the functionals 
* * *(( , ), ) ( ( ( )), )g u P v g u P v v and 

* * *(( , ), ) ( ( ( )), )h u P v h u P v v . 

Thus, we obtain a new game in normal form  = U,V,g,h, where U is the set 

of all strategies  *,u P , and functions g and h are defined as described above. 

We can work with the game  in the same way as the game , for example, look 

for the maximum guaranteed result of the first player or a Nash equilibrium situation. 

But you can get more meaningful results, because this game is endowed with a certain 

additional structure. 

Note that this structure has already taken into account the restrictions on the amount 

of information processed by the first player. And the mapping P specifies the “content” 

of the information it receives, and this mapping is selected by the first player himself. 

4 Maximum Guaranteed Result 

The simplest model of interest to us is a game of two persons of the Center-Agent type. 

In this case, it is usually assumed that the Center has the right of the first move. And 

then the only reasonable principle of optimality is the principle of the maximum guar-

anteed result. Let us dwell on this simplest case in detail. 

Traditionally, the maximum guaranteed result is defined as follows . 

Old definition. We fix a positive number  . Let us set 
*( , )B u P  of rational responses 

of the second player to the strategy  *,u P by the following condition: 

    * * *, : ( ( ( )), ) max ( ( ( )), )
w V

B u P v V h u P v v h u P w w


   , if the upper bound 

*sup ( ( ( )), )
w V

h u P w w


 is reached; 

 
   * * *, : ( ( ( )), ) sup ( ( ( )), )

w V

B u P v V h u P v v h u P w w 


   
 otherwise. 
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The maximum guaranteed result of the first player R  is 

*
*

( , )
sup inf ( ( ( )), ),

v B u P
R g u P v v




where the upper bound is taken over the set of all its strategies  *,u P .

An alternative definition can be formulated 

New definition. The number   is called the guaranteed result of the first player if 

there exist the number  and the condition u for which the following two conditions 

are satisfied: 

 there is such a strategy v  V for which h(u*(P(v)),v) ≥ ;

 for any strategy v  V either g(u(P(v)),v) ≥  or h(u(P(v)),v) < .

The exact upper bound for guaranteed results is called the maximum guaranteed result. 

Simple geometric reasoning shows that these two definitions are equivalent. 

The interpretation of the new definition is as follows. The strategy u allows us to 

get the guaranteed result  if the entire set of strategies is split into two parts: the strat-

egies from the first part will not be chosen by the second player because he gets a small 

payoff (h(u* (P(v)),v) < ), and for any choice of strategies from the second part, the 

first player will receive at least . Of course, the second part must be non-empty, since 

the second player must choose some strategy. 

The second point of the old definition is too cumbersome. Since games with re-

strictions on the amount of the transmitted information are much more complicated than 

the classical models, it becomes too difficult to work with the old definit ion. 

The new definition is noticeably simpler than the old one. This statement can be 

given a precise mathematical meaning. If we write both definitions in a formal lan-

guage, for example, the language of predicate calculus, then the new definition will be 

half the old one. 

The transition to a formal language allows one to obtain quite interesting results us-

ing equivalent transformations of the corresponding formulas. 

Some areas of research can be viewed from a unified position with a simple problem 

statement. For example, the theory of games with uncertain factors was presented until 

recently as a set of very complex problems that are not formally related to each other. 

The author guessed the solution each time (and then proved its optimality). Moreover, 

the structure of the solution turned out in a number of cases to be so complex that it was 

almost impossible to guess it. Thanks to the new definition, this structure is formed  

from purely formal calculations. In addition, it becomes possible to systematize t he 

admissible formulations of the problem (according to the formulas of the propositional 

calculus associated with them) and to assess the possibility of constructively solving a 

particular problem. 

Let us give an exact formulation of one of the results related to the simplest problem 

posed above [10]. For example, if you write both definitions in some formal language, 

say, the language of predicate calculus, then the new definition will be half the size of 

the old one. 

The transition to a formal language also provides a good method for obtaining rather 

interesting results using equivalent transformations of the corresponding formulas. 

Some areas of research can be viewed from a unified position with a simple problem 

statement. For example, the theory of games with uncertain factors was presented until 
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recently as a set of very complex problems that are not formally related to each other. 

The author guessed the solution each time (and then proved its optimality). Moreover, 

the structure of the solution turned out in a number of cases to be so complex that it was 

almost impossible to guess it. Thanks to the new definition, this structure is formed  

from purely formal calculations. In addition, it becomes possible to systematize the 

admissible formulations of the problem (according to the formulas of the propositional 

calculus associated with them) and to assess the possibility of constructively solving a 

particular problem. 

Let us give an exact formulation of one of the results related to the simplest problem 

posed above [10]. 

Theorem. Let 




0 1 1

( ) supsup... sup supmin supmax min ( , ) ,

inf max max ( , ) , ( , )

m

r

r Nv Vu U u U u U

r r

v V r N

c h u v

g u v h u v



 

 

    

 

 

   

The maximum guaranteed result of the first player in the game  is the smallest 

solution to the equation ( ) 0c   . 

This interpretation determines the way of performing the proof of the theorem. First, 

it is necessary to carry out fairly obvious transformations of the formula of the predicate 

calculus, which describes a new definition of the guaranteed result, and then replace 

the quantifiers of existence and generality (and the operation of disjunction and con-

junction) with the operators of maximum and minimum in the resulting formula with 

inequalities. The descriptions of these simple transformations are too long to fit in this 

article. 

Thus, the optimal strategy of a top-level player, characteristic of hierarchical games, 

is as follows: the second player, depending on the choice made, either punishes his 

partner or maximizes his own payoff. The punishment can be used in all cases in games 

without restrictions on the amount of the transmitted information, except for one. this 

“management style” is not always effective in practice. The situation is noticeably sim-

plified in games with restrictions on information exchanges. In this case, the relation-

ship between the “policy of the stick” and the “policy of the carrot” is determined to a 

large extent by the complexity of the corresponding tasks (and the concept of complex-

ity can be precisely defined in this context) [10]. 

5 Some New Problem Statements 

If the amount of processed information is not limited, then a simple optimal solution is 

to process all available information. If it is possible to estimate the amount of infor-

mation received by the player, then it can be used to estimate the costs of obtaining and 

processing it and take them into account in the player's objective function. Models of 

this type can be constructed and investigated [11]. 
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Until recently, the main focus was on models in which the top-level player receives 

only reliable information. This is no coincidence, since it can be shown that the appear-

ance of the possibility of obtaining inaccurate information in games without external 

uncertainty does not increase the maximum guaranteed result of the top-level player. 

The situation when the reliability of the information received by the player of the 

upper level is guaranteed corresponds to the case when he himself "extracts" infor-

mation about the actions of the partner. In practice, it is much more common to find 

cases when lower-level players submit reports on their activities upstairs, which may  

contain incorrect information. 

Information can be corrupted during transmission (undetected integrity violation). If 

a “part” of the transmitted information is distorted and the player receiving it does not 

know which part turned out to be distorted, then it is not possible to obtain a meaningful 

formal description of such a situation if models are used without restrictions on the 

amount of the transmitted information. 

It is possible to implement both interval and stochastic versions of the model in the 

case of games with limited volumes of transmitted information, [12–13]. The problem 

of calculating the maximum guaranteed result of the operating party can be solved in 

both versions. And the obtained results have a fairly reasonable interpretation. 

Another situation is when the player of the lower level deliberately distorts infor-

mation about his actions. When the amount of information to be transmitted is limited , 

the top-level player can “selectively check” the validity of the transmit ted messages. In 

this case, conditions arise for setting various tasks that provide an effective solution 

[14], including the identification of corruption schemes. 

6 Information Theory of Hierarchical Systems 

Yu. B. Germeier and N.N. Moiseev [15] already noted in one of the first works on the 

information theory of hierarchical systems that a hierarchy arises when the amount of 

information required for effective management of the system turns out to be too large 

to could be processed "in real time". At the same time, it is necessary to take into ac-

count that as soon as some element of the system receives the right to choose controls, 

it immediately has its own interests, which do not always coincide with the interests of 

the system as a whole. Thus, there are two trends. The possible discrepancy between 

the interests of the elements speaks in favor of the advisability of centralizing manage-

ment, and the lack of information leads to the need to decentralize management. 

On a qualitative level, this was already clear in the early seventies of the last century. 

But it was not possible to construct quantitative models for a long time precisely be-

cause of the lack of a measure of the amount of information. 

It is possible to follow the path outlined above. Let us consider the Center – Agent 

system (or Agents) but in the presence of external uncertain factors and suppose that 

the agents have accurate information about the realized values of the uncertain factors. 

In addition, we will assume that the Center can also receive information about uncertain 

factors but to a limited extent (the amount of information can be defined as in Section 

3). 
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The two control schemes can be compared. In one, the Center concentrates in its 

hands the right to choose all departments. In another, it delegates the right to choose 

certain controls to agents. 

It turns out that all control systems are divided into two classes. The first class in-

cludes systems for which a centralized management method is more preferable for the 

Center, regardless of the amount of information available to it. The existence of such 

systems is not surprising. The second class includes systems in which, with large 

amounts of information available to the Center, a centralized management method is 

beneficial, and with small amounts, a decentralized management method becomes more 

preferable. 

Analysis of examples shows that the feasibility of decentralization of management  

is largely determined by the degree of coordination of interests of the Center and the 

Agents. True, today there is no formal definition of the concept of “the degree of con-

sistency of interests”. 

Details can be found in [16,17]. In the first of them, the effectiveness is assessed by 

the guaranteed result of the Center. In the second, it is assumed that the set  of uncertain 

factors is endowed with a probabilistic measure, and the control efficiency is estimated 

by the mathematical expectation of the Center's payoff relative to this measure. 

7 Other Ways to Quantify Information 

Let us dwell on two alternative ways of defining the concept of “amount of infor-

mation”. 

In Section 3, we assumed that information is encoded by words in the alphabet {0,1} 

of the same length. It is also possible to consider the case when words are used, the 

length of which does not exceed a given value. This case can easily be reduced to the 

one already considered. But it can be assumed that many factors about which infor-

mation is transmitted are endowed with a probabilistic measure. Then, as a measure of 

the amount of information, you can use the mathematical expectation of the length of 

the word that the Center will receive. This approach was proposed by K. Shannon at 

the dawn of information theory. 

With such a definition of the amount of information, all the tasks discussed above 

can be set. True, the technique for solving the problem of centralized control from the 

previous section has been developed so far [18]. 

The second way to determine the amount of information has already been mentioned 

above. It is largely associated with the huge amounts of information processed in the 

management of modern complex systems. Let us suppose that when managing a sys-

tem, 1 terabyte of information is used. It is clear that the situation will essentially not 

change if we increase this volume by 1 megabyte or decrease it by 2 kilobytes. From 

what has been said, it is clear that with such volumes, ordinary numbers are not very 

suitable for measuring the amount of information. We need to look for some kind of 

alternative. 

We can go the traditional way and replace a large finite set with some kind of con-

tinuum and use the “size” of this continuum as a measure of the amount of information. 

It is quite natural, for example, to consider this continuum endowed with topology and 

use its dimension as a “size”. One of the models of this kind can be found in [8]. 
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8 Conclusions 

A new concept of the maximum guaranteed result is introduced, which allows finding 

solutions to problems that are characterized by restrictions on the amount of data avail-

able for decision-making. This concept correlates with the classical one (G. von 

Stackelberg and Yu.B. Germeier), but it is simpler and more convenient than the latter. 

An example of calculating the maximum guaranteed result in the simplest problem with 

exchanges of finite amounts of data is given. The structure of optimal strategies for this 

problem is more similar to the strategies of the players used in practice than to the 

strategies in traditional problems of the theory of hierarchical games. Variants of the 

model are considered, in which distortions of the transmitted information are possible. 

Three versions of such models have been investigated: when information is distorted 

uncontrollably, distorted randomly, or distortion occurs as a result of purposeful actions 

of one of the players. 

The outlined ideas make it possible to build methods for solving applied problems, 

including in conditions of high external uncertainty, which is typical for problems in 

agricultural production, where, for example, data on weather conditions are important. 

The use of game theory in decision-making tasks allows us to consider the need for 

coordinating centralization and decentralization in making strategic decisions in agri-

cultural production, where centralized coordination is needed in the processing of large 

amounts of data generated by a large number of small producers. The situation is similar 

to the one to which Klaus Schwab drew attention [19]: “Today the situation is funda-

mentally different, over the past decades (in the Western world) the role of the state has 

significantly decreased. This situation needs to change because it is difficult to imagine 

how an exogenous shock of such magnitude as that caused by COVID 19 can be dealt 

with purely market-based solutions.” 
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