
Domain Shifts in Reinforcement Learning: Identifying Disturbances in
Environments

Tom Haider1∗† , Felippe Schmoeller Roza1† , Dirk Eilers1 , Karsten Roscher1 and Stephan
Günnemann2

1Fraunhofer IKS
2Technical University of Munich

Abstract
A significant drawback of End-to-End Deep Rein-
forcement Learning (RL) systems is that they return
an action no matter what situation they are con-
fronted with. This is true even for situations that
differ entirely from those an agent has been trained
for. Although crucial in safety-critical applications,
dealing with such situations is inherently difficult.
Various approaches have been proposed in this di-
rection, such as robustness, domain adaption, do-
main generalization, and out-of-distribution detec-
tion. In this work, we provide an overview of
approaches towards the more general problem of
dealing with disturbances to the environment of RL
agents and show how they struggle to provide clear
boundaries when mapped to safety-critical prob-
lems. To mitigate this, we propose to formalize the
changes in the environment in terms of the Markov
Decision Process (MDP), resulting in a more for-
mal framework when dealing with such problems.
We apply this framework to an example real-world
scenario and show how it helps to isolate safety
concerns.

1 Introduction
Deep Reinforcement Learning (RL) has been successfully ap-
plied to many different domains, achieving state-of-the-art
performance on a wide range of high-dimensional control
problems [Mnih et al., 2013; Silver et al., 2017; Levine et al.,
2016; Lillicrap et al., 2015]. However, RL systems are still
not commonly applied to safety-critical scenarios. A relevant
factor for this is that RL agents are highly sensitive to distur-
bances in the environment they were trained in [Eysenbach
and Levine, 2021]. Even slight changes in the specifications
of the environment can already lead to severe malfunctions or
failures of many RL-based systems.

Take as an example a humanoid robot that is trained to walk
on a rigid body surface, such as concrete or wood. While
∗Contact Author (firstname.lastname@iks.fraunhofer.de)
†equal contributions
Copyright c©2021 for this paper by its authors. Use permitted

under Creative Commons License Attribution 4.0 International (CC
BY 4.0).

state-of-the-art algorithms can be deployed to train policies
that solve this task [Haarnoja et al., 2018; Schulman et al.,
2017], it is still difficult to ensure that the robot will func-
tion properly if tested on a softer surface such as grass or
sand. Even though the task essentially stays the same, most
RL algorithms struggle with disturbances like these, leading
to potential failures.

In the classic supervised or unsupervised learning
paradigm, we could frame this problem as out-of-distribution
(OOD). In that context, training samples are typically as-
sumed to be Independent and Identically Distributed (IID)
whereas for OOD samples, the ‘identically’ assumption is
violated. Strictly applying this definition we could interpret
soft and rigid surfaces to be sampled from non-identical dis-
tribuions and thus a normal operation of the robot can not
be expected. However, solid and soft surfaces could theo-
retically come from the same distribution (the distribution of
surfaces) but during training, only a small part of the distribu-
tion was experienced (the part of the distribution where sur-
faces are solid). In this case, this is not an OOD instance but
rather a generalization problem. The robot should be able to
‘generalize’ to the entire distribution. In Control Theory and
RL, this is also known as ‘robustness to external influences’.
Note that even this simple example can become ambiguous
and one could think that OOD and robustness are dealing with
the same phenomena.

In this work, we provide insights towards a better formal-
ization of disturbances to the environment of RL agents. We
propose a simple but powerful decomposition of any given
disturbance into its aspects of the Markov Decision Process
(MDP). We compare this decomposition to a set of commonly
used terms, that also describe disturbances to the environment
and, by that, aim to disambiguate any commonalities and dif-
ferences. To illustrate our method, we apply it to a series of
potential disturbances in an exemplary real-world scenario.
We show that this method helps at identifying potential risks
that can occur during the deployment of RL agents. We see
this as a necessary step towards guaranteeing the safety of RL
agents in non-idealistic problem settings. We do not attempt
at building a unifying framework, that combines all existing
work in this direction. Rather, we want to provide an alterna-
tive view on disturbances in the environments of RL agents,
that should help when approaching this problem and allow to
compare approaches from different related fields.



2 Related Work
In this section we formalize the RL framework and present
different concepts related to the problem of dealing with
changes from the training domain to the testing domain.

2.1 Preliminaries
In RL, we consider an agent that sequentially interacts
with an environment modeled as a Markov Decision Pro-
cess (MDP) [Puterman, 2014]. An MDP is a tuple M :=
(S,A,R, P, µ0), where S is the set of states, A is the set
of actions, R : S × A × S 7→ R is the reward function,
P : S ×A× S 7→ [0, 1] is the transition probability function
which describes the system dynamics, where P (st+1|st, at)
is the probability of transitioning to state st+1, given that the
previous state was st and the agent took action at, and µ0 :
S 7→ [0, 1] is the starting state distribution. At each timestep
the agent observes the current state st ∈ S, takes an action
at ∈ A, transitions to the next state st+1 drawn from the dis-
tribution P (st, at), and receives a reward R(st, at, st+1).

2.2 Distributional Shift and OOD
Distributional shift describes changes in data distributions.
When only the input distribution changes while the condi-
tional distribution of outputs remains unchanged, it is called
covariate shift. When the testing distribution differs from the
training distribution, machine learning systems may not only
exhibit poor performance but also wrongly assume that their
performance is good [Amodei et al., 2016].

Out-of-distribution (OOD) defines the data that lay outside
the training distribution. More formally, consider that PX and
QX are two distinct data distributions defined on the input
space X . If a model is trained on a dataset drawn from the
distribution PX , samples from this set will be defined as in-
distribution while QX is part of the OOD domain [Liang et
al., 2017].

Although formally defined, mapping real in- and out-of-
distributions into training and testing sets is challenging for
high-dimensional feature spaces. Using datasets for testing
that contain classes different from those composing the train-
ing set is an established practice in image classification [De-
Vries and Taylor, 2018]. Despite being an interesting ap-
proach, it can induce a bias towards a chosen OOD set and
can, nevertheless, only be applied to classification problems.

In RL, there is not a consensus on how to frame OOD into
practical examples yet. [Sedlmeier et al., 2019] provide one
of the first publications on this topic and define OOD as every
state-action tuple not experienced during training. The diffi-
culty in generating OOD scenarios due to a lack of controlled
and reproducible datasets in RL is also mentioned. [Men-
donca et al., 2020] use a more relaxed interpretation, defining
OOD as tasks never seen by the agent.

2.3 Transfer Learning, Domain Adaptation and
Domain Randomization

The objective of transfer learning (TL) is to learn a task TB
that belongs to a target domain B, by utilizing experience
(prior knowledge) from some source task TA from source do-
main A, i.e. to transfer knowledge from A to B [Yosinski et
al., 2014].

Domain adaptation (DA) is a sub-field of transfer learning.
DA can be defined as the capability to deploy a model trained
in one or more source domains into a different target do-
main. While DA encompasses cases where the source and tar-
get domains have the same feature space, TL includes cases
where the feature space of the target domain differs from the
source domain [Redko et al., 2019]. Typically, invariance is
assumed, meaning that features that differ between two do-
mains are irrelevant for the task. [Tzeng et al., 2014] use
this assumption to train a CNN architecture to learn a domain
invariant feature representation that transfers well between
two domains. [Ganin et al., 2016] deploy domain adversarial
training to learn features that are both discriminative for the
main learning task on the source domain and indiscriminate
with respect to the shift between the domains.

In domain randomization, the source domain is manipu-
lated at random over a set of parameters in order to train a
more generalizable model. [Sadeghi and Levine, 2016] and
[Tobin et al., 2017] show that randomizing the rendering set-
tings for a simulator can be used to train policies that gen-
eralize to the real world without requiring the simulator to
be extremely realistic. [Rajeswaran et al., 2016] show that
randomizing over a set of system dynamics can lead to more
robust policies that can generalize to a broad range of possi-
ble target domains, including effects that are not modeled in
the training distribution.

2.4 Novelty Detection and Intrinsic Motivation
Novelty is a known mechanism used by human beings to ex-
plore and learn new things. Many studies in the neuroscience
field bring the converging evidence that novelty can activate
the reward region of the brain in both humans and animals,
playing an important role in their reinforcement learning pro-
cess [Houillon et al., 2013].

In machine learning, novelty describes data that belong to
an unknown pattern [Hajer et al., 2020]. Novelty detection
is oftentimes used to identify outliers and faulty operation
states. In RL, however, identifying undesired operations is
more closely related to distributional shift and OOD detection
while novelty is commonly utilized as a mechanism for explo-
ration purposes. As shown by [Burda et al., 2018], this mech-
anism is also referred to as intrinsic motivation or curiosity-
driven exploration. [Lehman and Stanley, 2008] show how
exploration based on novelty can be an efficient way to avoid
getting stuck at local optima regions, a recurrent issue in
problems where climbing the stepping stones that ultimately
lead to the goal is not rewarded by the objective function.

Despite its importance, seeking novelty brings a paradoxi-
cal consequence: exploring the unknown may lead to a com-
pletely unexpected outcome, including a bad one. Although
learning from bad experiences is valuable, in safety-critical
applications some states are dangerous and must not be vis-
ited. In such cases, safe exploration methods are paramount
to avoid violating the safety constraints.

2.5 Robust RL
Robustness is an important topic in ML since trained mod-
els are expected to work despite small deviations in the input
features. Recently, discussions regarding adversarial attacks



have shown that neural networks are vulnerable to specifi-
cally designed small changes in the input which result in dras-
tic changes in their predictions [Madry et al., 2017]. The
very existence of adversarial attacks may suggest an inherent
weakness of deep learning models, reigniting the interest of
researchers in the search for more robust models. This same
problem can affect RL models, as shown by [Pinto et al.,
2017]. [Nilim and El Ghaoui, 2003] argue that in RL, robust-
ness is usually related to uncertainties in the transition matrix
of the MDP while [Pinto et al., 2017] shows that RL models
should also be robust to model initializations and modeling
errors.

Robustness regarding RL can also be viewed by the op-
tics of control theory since RL can be described as a dynam-
ical closed-loop system. In control theory, robustness is a
widely studied field that focuses on the control of systems
subject to uncertainty, noise, and disturbances, consisting of
the synthesis (i.e., designing robust controllers) and analy-
sis (i.e., evaluating the robustness of a controller) problems
[Zhou and Doyle, 1998; Bhattacharyya and Keel, 1995]. Ro-
bust control can be used to increase operational safety and
performance on safety-critical applications, such as the con-
trol of nuclear power plants [Jin et al., 2010]. [Calafiore
and Campi, 2006] argue that robust control has received criti-
cism for being too rigid in describing uncertainty, resulting in
overly conservative controllers and opening the path to alter-
native approaches. However, formalizing robustness in RL is
not a trivial task and robust RL algorithms are not yet widely
accepted as a replacement to classical robust control methods.

2.6 Operational Design Domain
Operational Design Domain (ODD) is defined by [NHTSA,
2017], in the context of automated driving systems. ODD
is used to describe the specific conditions on which the sys-
tem is intended to function safely. Information like roadway
types, geographic area, speed range, among others, should be
included in the ODD and documented accordingly to describe
the desired operation domain. How the system should react
when getting outside of its defined ODD is also a relevant
related topic.

[Koopman and Fratrik, 2019] show how to use ODD in ML
problems and extend ODD by including object and event de-
tection and response, vehicle maneuvers, and fault manage-
ment. A list including examples relevant for the automated
driving scenario, which fall in each of these categories, is then
provided as a starting point when designing systems based on
ML.

Despite being originally described for automated driving
applications, ODD provides an explicit framework to specify
the intended deployment domain regarding safety-relevant as-
pects and is a powerful tool that can be helpful when design-
ing RL systems and defining their operation domain.

3 How can these concepts help in RL
problems?

The concepts presented in the previous section are of rele-
vance when dealing with uncertainties and changes in the en-
vironment. However, the distinction between them is sub-

Testing Environment

Known Environment

Training Environment

Figure 1: Visualizing the problem: distinction between training,
known, and testing domains. The chess-like patterns describe the
intersections with the testing region.

tle, and bringing these concepts down to RL problems is not
straightforward. One approach that could help in that en-
deavor is shown in Figures 1 and 2.

Figure 1 shows the whole problem domain, i.e., the dis-
tribution over environments reachable by the agent during
training and testing. The Training Environment considers
all the situations the agent can encounter during training. It
can alternatively be described as the in-distribution domain.
Designing this region using the ODD framework is helpful
when defining safe boundaries that the agent must respect.
The region corresponding to the already explored portion of
the training domain is hereby defined as the Known Environ-
ment. The last domain is the Testing Environment, which en-
compasses the whole region the agent can come across after
deployment. There can be overlaps between the different do-
mains, as depicted in the figure. The optimal scenario hap-
pens when the whole testing domain is included in the train-
ing region and the agent is able to explore the domain com-
pletely during training, which is often not feasible for large
problems.

When dealing with the problem of domain shifts in RL,
mapping the regions of Figure 1 into the concepts described
in the previous section can help with its characterization, as
depicted in Figure 2. This mapping is not unique and is not
intended to reflect the whole theory behind domain shifts. It is
rather, in our perspective, the most appropriate for RL prob-
lems subject to changes in the environment. Analyzing the
Known Domain is not the focus of this paper and is there-
fore ignored here. However, we would like to point out that
unsafe states can also occur within the known environment
of a system. The region inside the training domain that is
still unknown to the agent is mapped as the Novelty Region,
i.e., the region that can be explored during training. After de-
ployment, the agent should be robust to novel states, which
belong to the same distribution of the training examples, here
defined as the Robustness Region. The last region is defined
as the OOD region, composed of samples from a different
distribution to the training distribution.

A drawback of this approach is that it is difficult to draw
specific boundaries to differentiate these regions, especially



Novelty

Region

Robustness
Region

OOD Region

Figure 2: A possible mapping for the domain regions from Fig. 1
into ML approaches that deal with domain shifts. For RL problems,
the regions of interest can be related to novelty, robustness, and OOD
problems.

because it is not trivial to list the changes to the environment
that can lead to situations outside of the training domain. To
make it even worse, a consensus on how to apply some of
the concepts in RL is still missing. Therefore, different in-
terpretations may arise based on how the ideas are ported
from more general ML problems into the RL framework. For
instance, if we follow the definition from [Sedlmeier et al.,
2019], everything outside the known environment is consid-
ered OOD. On the other hand, based on the interpretation
from [Mendonca et al., 2020], OOD is composed of tasks
semantically different from the training ones. However, for-
mally defining semantic differences in the tasks is difficult.

4 Formalizing Domain differences as Aspects
of the MDP

The methods described in section 2 all share a common char-
acteristic: they deal with problems in which the train/source
task differs from the test/target task. In other words, the
test/target task is disturbed. The difference in these methods
arises from how this disturbance manifests, i.e., how training
and testing tasks relate to each other. As a first step towards
safe RL, we believe it is necessary to gain a better under-
standing of this relationship. For this, we borrow an idea that
is commonly used in the Transfer Learning literature [Taylor
and Stone, 2009; Zhu et al., 2021], which we coin MDP de-
composition. That is, any disturbance is sub-divided into the
individual components that build up the MDP. This decompo-
sition should come naturally since MDPs are used to describe
RL problems in the first place. We want to point out that Safe
RL has more many more dimensions, such as safety during
training or robustness against adversarial attacks. Safety con-
cerns that arise from differences between training and deploy-
ment environment are only one aspect, which is the aspect
tackled by the hereby proposed approach.

Two tasksMA andMB, i.e., the training scenario A and
the testing scenario B, can thus be different only in the fol-
lowing aspects (or a combination thereof):
• S (State-space): Enlargements, reductions or changes to

the set of possible states;
• A (Action-space): Additional or fewer actions, changed

ranges of continuous actions;
• P (Transition Dynamics): Different transition probabil-

ities, given the same state-action pairs;
• R (Reward Function): Modified reward function that re-

inforces different behaviors;
• µ0 (Initial states): Different initial state distributions.
Although this may seem like a relatively trivial matter at

first, the benefits of this simple method quickly become ap-
parent in practice. Training an RL agent to solve tasks while
reliably meeting necessary safety constraints is an intricate
problem. While many safety-critical issues can be addressed
by accurate modeling in the training environment, via domain
randomization or hand-crafted safety controllers, accounting
for every possible safety-critical situation is intractable given
the complexity of the real world. We, therefore, have to make
assumptions on the relationship between training and testing
environments, otherwise guaranteeing safety becomes impos-
sible. To formulate this relationship we can turn to the tradi-
tional problem formulations mentioned in 2. We find, how-
ever, that framing even simple examples into definitions like
distributional shift, novelty detection, out-of-distribution or
robustness is not only complicated but provides limited in-
sights towards an appropriate safety argumentation. MDP de-
composition on the other hand is straightforward and allows
us to locate the problem in the individual components of the
MDP.

It is important to mention that every element that com-
poses an MDP is formally defined. Therefore, it is possible
to outline operational limits, boundaries, or distributions over
each element. As an example, one could train a robust agent
where, due to degradation on the actuators that might occur
with time, the maximum action can be reduced by up to 20%
of the nominal value. Another example is an agent able to
deal with some sort of noisy sensor, that will change the ob-
servation of the states. In that sense, it becomes clear how to
design test cases that cover the range of operation, solely by
changing the MDP element that is affected by these changes.
This naturally helps with separating concerns, a crucial com-
ponent when arguing about safety. Moreover, it is an initial
step towards better comparability in the regime of Safe RL as
it allows us to compare approaches that currently run under
different terms and formulations on a more uniform scale.

Mapping which aspect of the MDP is affected by a change
in the system relies on a good comprehension of the process.
The state-space can be altered due to novel elements inserted
in the surroundings of the agent. Also, changes in the sensors
(noise, wear and tear, replacement, preprocessing changes)
can lead to a different perception of the state-space. Novel
elements can also have dynamics unseen by the agent, af-
fecting the transition function. The underlying behavior of
novel elements will also affect the transition function, as they
can have a collaborative or adversarial behavior for instance.
Changes in the action-space are usually related to failures
or degradation of the actuators. Upgrading the system (e.g.,
the attachment of a new actuator in a robot) can also lead
to a different action-space. Mapping changes to the reward
function is a particular case since the function is designed to



Figure 3: Environment used as example to apply the proposed for-
mulation over different concepts. The AGV is a two-wheeled e-puck
robot, the obstacles are represented as boxes, the goal is to reach the
red tile in the upper corner. Note: disturbances are absent during
training (e.g. no workers interacting with the AGV, no malfunctions,
etc.).

translate the task into an objective function that allows the
agent to learn. Therefore, changes in the task itself will cause
changes in the reward function. Also, the reward function can
be changed to guide the agent while learning (reward shap-
ing). Isolating initial state changes is more straightforward
and self-explanatory.

5 Example Scenario
To demonstrate the expressiveness of the decomposition de-
scribed above, we apply it to an exemplary real-world sce-
nario, depicted in Figure 3.

Consider an Automated Guided Vehicle (AGV) navigating
in a warehouse. To determine its location and to identify its
surroundings, it is equipped with an array of sensors (e.g.,
camera, lidar, accelerometer). The primary task goal for the
AGV is to reach the destination position. The safety con-
straint is to avoid any collisions with its surroundings. In a
realistic setting, there are several challenges the AGV might
face, such as workers or other robots interacting with the
AGV (collaborative and non-collaborative), multiple goals,
malfunctions of AGV (flat tire, low battery, etc.), or noisy
sensors. For the purpose of this example, we consider all of
these hazards absent during training, i.e., they represent dis-
turbances to the environment during deployment.

Table 1 shows that each of these hazards can be traced
back to only a single or at most two components of the MDP.
This mapping is straightforward and directly helps to isolate
safety-relevant issues. Once isolated, these issues can be de-
tected and handled more easily.

Conversely, applying the existing formulations covered in
section 2 provides limited insights, as we show in the follow-
ing. Apart from noisy sensors, all problems can be framed
as an instance of domain shift, OOD, or novelty, depend-
ing on the definition, as described in 1. Therefore, domain
shift/OOD/novelty as a proxy for safety-critical situations are
not particularly helpful. If the severity of disturbances is
not addressed explicitly, minor disturbances, which are es-
sentially irrelevant to the safety of the system, are already

S A P R µ0

Workers interacting
with the AGV X X

Other robots interacting
with the AGV X X

Changed warehouse layout X
Multiple goals X
Unusual starting position X
Malfunctions of the AGV (X) X
Noisy sensors X

Table 1: Decompostion of potential hazards in the warehouse do-
main into components of the MDP.

deemed as a safety concern.
Robustness is typically used when dealing with problems

such as noisy sensors, slight malfunctions of the robot, or
minor external disturbances. However, as soon as the dis-
turbances are more severe, e.g., workers interacting with the
environment, achieving robustness is usually infeasible.

ODD can help to define the boundaries of a system more
clearly but it essentially requires anticipating all potential
safety threads during the design of the system. MDP decom-
position can help in this process, by giving deeper insights
into potential causes of safety threads.

Transfer Learning/Domain adaptation as described in sec-
tion 2 actually tackles another problem. They assume the
changes from source to target domain to be static, and not
ad hoc like sudden malfunctions of the robot or interactions
with humans. If we can assume, however, that disturbances
are static, e.g., changes to the layout of the warehouse, trans-
fer learning approaches might be the tool of choice.

6 Conclusion
Handling disturbances in the environment is an essential step
towards safe RL systems. We showed that previous work ap-
proaches this problem from various different angles, though
often lacking a clear problem formalization within the RL do-
main. Thus, applying existing approaches from other areas to
RL problems is not straightforward. To disambiguate how
changes in the environment of an RL agent can manifest in
a formal task definition, we proposed to decompose complex
problems into the aspects that build up the MDP. This simple
trick allows us to isolate different concerns and treat each of
them separately. We applied this method to a simple obstacle
avoidance task, where a wheeled robot has to navigate in a
warehouse. By listing potential disturbances and analyzing
how they affect the MDP, we laid ground for this framework
to help when dealing with complex real-world scenarios.

We also see some clear limitations to this approach. Even
if potential disturbances can be located in a single part of
the MDP, it is still a problem of its own to properly handle
them. For the above scenario, consider for example that we
introduce novel obstacles that look the same as the cardboard
boxes but which are also able to move. This would manifest
as a change to the transition function only, since individual
states stay the same and only sequences of states are different
from before. Although posing a severe thread to safety, de-



tecting such a change is complicated, even when decomposed
into MDP components.

Future work has to detail further how the MDP decom-
position and structuring of the problem can be utilized for
adding robustness and ensuring safety under environmental
disturbances. We intend to use this formalization and ana-
lyze how we can both detect and handle disturbances in indi-
vidual components of the MDP. We believe that this change
of perspective results in a more accurate characterization of
safety critical applications targeted for RL systems and nat-
urally helps with formalizing safety objectives, bringing us
closer to enable an appropriate validation of RL systems.

References
[Amodei et al., 2016] Dario Amodei, Chris Olah, Jacob

Steinhardt, Paul Christiano, John Schulman, and Dan
Mané. Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565, 2016.

[Bhattacharyya and Keel, 1995] Shankar P Bhattacharyya
and Lee H Keel. Robust control: the parametric approach.
In Advances in control education 1994, pages 49–52. El-
sevier, 1995.

[Burda et al., 2018] Yuri Burda, Harri Edwards, Deepak
Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv
preprint arXiv:1808.04355, 2018.

[Calafiore and Campi, 2006] Giuseppe C Calafiore and
Marco C Campi. The scenario approach to robust con-
trol design. IEEE Transactions on automatic control,
51(5):742–753, 2006.

[DeVries and Taylor, 2018] Terrance DeVries and Gra-
ham W Taylor. Learning confidence for out-of-
distribution detection in neural networks. arXiv preprint
arXiv:1802.04865, 2018.

[Eysenbach and Levine, 2021] Benjamin Eysenbach
and Sergey Levine. Maximum entropy rl (prov-
ably) solves some robust rl problems. arXiv preprint
arXiv:2103.06257, 2021.

[Ganin et al., 2016] Yaroslav Ganin, Evgeniya Ustinova,
Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. The Jour-
nal of Machine Learning Research, 17(1), 2016.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learn-
ing with a stochastic actor. 2018. Milestone Algorithm;
Stochastic Actor-Critic.

[Hajer et al., 2020] Jan Hajer, Ying-Ying Li, Tao Liu, and
He Wang. Novelty detection meets collider physics. Phys-
ical Review D, 101(7):076015, 2020.

[Houillon et al., 2013] A Houillon, RC Lorenz, W Boehmer,
MA Rapp, A Heinz, J Gallinat, and K Obermayer. The
effect of novelty on reinforcement learning. Progress in
brain research, 202:415–439, 2013.

[Jin et al., 2010] Xin Jin, Asok Ray, and Robert M Edwards.
Integrated robust and resilient control of nuclear power
plants for operational safety and high performance. IEEE
Transactions on Nuclear Science, 57(2):807–817, 2010.

[Koopman and Fratrik, 2019] Philip Koopman and Frank
Fratrik. How many operational design domains, objects,
and events? SafeAI@ AAAI, 4, 2019.

[Lehman and Stanley, 2008] Joel Lehman and Kenneth O
Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In ALIFE, pages 329–336.
Citeseer, 2008.

[Levine et al., 2016] Sergey Levine, Chelsea Finn, Trevor
Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. 17(1):1334–1373, 2016. Publisher:
JMLR. org.

[Liang et al., 2017] Shiyu Liang, Yixuan Li, and
Rayadurgam Srikant. Enhancing the reliability of
out-of-distribution image detection in neural networks.
arXiv preprint arXiv:1706.02690, 2017.

[Lillicrap et al., 2015] Timothy P. Lillicrap, Jonathan J.
Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous con-
trol with deep reinforcement learning. 2015. continuous Q
learning with actor network for approximate maximizatio.

[Madry et al., 2017] Aleksander Madry, Aleksandar
Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[Mendonca et al., 2020] Russell Mendonca, Xinyang Geng,
Chelsea Finn, and Sergey Levine. Meta-reinforcement
learning robust to distributional shift via model iden-
tification and experience relabeling. arXiv preprint
arXiv:2006.07178, 2020.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

[NHTSA, 2017] NHTSA. Automated driving systems 2.0:
A vision for safety. Washington, DC: US Department of
Transportation, DOT HS, 812:442, 2017.

[Nilim and El Ghaoui, 2003] Arnab Nilim and Laurent
El Ghaoui. Robustness in markov decision problems with
uncertain transition matrices. In NIPS, pages 839–846.
Citeseer, 2003.

[Pinto et al., 2017] Lerrel Pinto, James Davidson, Rahul
Sukthankar, and Abhinav Gupta. Robust adversarial re-
inforcement learning. In International Conference on Ma-
chine Learning, pages 2817–2826. PMLR, 2017.

[Puterman, 2014] Martin L Puterman. Markov decision pro-
cesses: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[Rajeswaran et al., 2016] Aravind Rajeswaran, Sarvjeet
Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt:



Learning robust neural network policies using model
ensembles. arXiv preprint arXiv:1610.01283, 2016.

[Redko et al., 2019] Ievgen Redko, Emilie Morvant,
Amaury Habrard, Marc Sebban, and Younes Bennani.
Advances in domain adaptation theory. Elsevier, 2019.

[Sadeghi and Levine, 2016] Fereshteh Sadeghi and Sergey
Levine. Cad2rl: Real single-image flight without a single
real image. arXiv preprint arXiv:1611.04201, 2016.

[Schulman et al., 2017] John Schulman, Sergey Levine,
Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization. 2017. deep RL with natural
policy gradient and adaptive step size.

[Sedlmeier et al., 2019] Andreas Sedlmeier, Thomas Gabor,
Thomy Phan, Lenz Belzner, and Claudia Linnhoff-Popien.
Uncertainty-Based Out-of-Distribution Classification in
Deep Reinforcement Learning. December 2019.

[Silver et al., 2017] David Silver, Julian Schrittwieser,
Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of go without human
knowledge. nature, 550(7676):354–359, 2017.

[Taylor and Stone, 2009] Matthew E Taylor and Peter Stone.
Transfer Learning for Reinforcement Learning Domains:
A Survey. page 53, 2009.

[Tobin et al., 2017] Josh Tobin, Rachel Fong, Alex Ray,
Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural net-
works from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2017.

[Tzeng et al., 2014] Eric Tzeng, Judy Hoffman, Ning Zhang,
Kate Saenko, and Trevor Darrell. Deep domain confu-
sion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

[Yosinski et al., 2014] Jason Yosinski, Jeff Clune, Yoshua
Bengio, and Hod Lipson. How transferable are features in
deep neural networks? arXiv preprint arXiv:1411.1792,
2014.

[Zhou and Doyle, 1998] Kemin Zhou and John Comstock
Doyle. Essentials of robust control, volume 104. Pren-
tice hall Upper Saddle River, NJ, 1998.

[Zhu et al., 2021] Zhuangdi Zhu, Kaixiang Lin, and Jiayu
Zhou. Transfer Learning in Deep Reinforcement Learn-
ing: A Survey. arXiv:2009.07888 [cs, stat], March 2021.
arXiv: 2009.07888.


	Introduction
	Related Work
	Preliminaries
	Distributional Shift and OOD
	Transfer Learning, Domain Adaptation and Domain Randomization
	Novelty Detection and Intrinsic Motivation
	Robust RL
	Operational Design Domain

	How can these concepts help in RL problems?
	Formalizing Domain differences as Aspects of the MDP
	Example Scenario
	Conclusion

