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Abstract. This paper describes the research that our team, DA Master,
did on the shared task HASOC, conducted by FIRE-2019, which involves
identification of hate and offensive language in Twitter and Facebook
posts. The task is divided into three sub-tasks. Our team conducted
our experiments on an English dataset. We employed Machine Learning
techniques like Logistic Regression and Navies Bayes classifier and a Deep
Learning based approach which utilizes Convolutional Neural Networks.
Our best model obtained Macro F1 score of 0.6472 for SubTask-A, 0.4068
for SubTask-B and 0.4303 for SubTask-C.

1 Introduction

In the past few years, there has been an exponential rise in the number of peo-
ple who have uninhibited access to the internet. The arrival of the ”Netizen”
populace, and their affinity for interacting via social media platforms like Twit-
ter, Facebook, Instagram etc. has led to the manifestation of diverse online user
behaviour. Sometimes the online behaviour exhibited by individuals on social
media platforms is hostile, targeting an individual(s) or a community by posting
insults or threats. Studies have shown that hate/offensive messages are becom-
ing extremely common on social media platforms, accounting for almost 500
million posts daily on Twitter1. Thus, the problem of detecting and stifling the
propagation of hateful or offensive posts on social media is a pertinent issue for
research.

To promote research in this field several competitions have been organized,
such as OffenseEval[1], GermanEval[2]. Recently, HASOC [3] was organized as
a shared task for FIRE 2019. The task is aimed at identifying hateful and offen-
sive language in social media posts. The task was organized for three languages
namely English, Hindi and German, but our team conducted our investigation
only on the English dataset.

1 https://sproutsocial.com/insights/social-media-statistics/
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Organizers proposed a hierarchical model which consists of three sub-tasks:

– TASK-A: Identification of hate and offensive language, posts are
classified as follows:
• Hate and Offensive(HOF)
• Not Hate and Offensive(NOT)

– TASK-B: Categorization of Hate and Offensive, posts identified as
HOF in task-A are further categorized as:
• Hate Speech(HATE)
• Offensive(OFFN)
• Profane(PRFN)

– TASK-C: Identification of target,in which posts identified as HOF in
task-A are further classified on the basis of whether the post targets a par-
ticular individual/group or not.
• Targeted Insult(TIN)
• Untargeted Insult(UNT)

The rest of paper is organized as follows. In Section 2 we discuss related
works and the dataset is discussed in Section 3. Proposed methods are presented
in Section 4 and the results in Section 5. Finally, we conclude our work in Section
6.

2 Related Work

The past few years have seen an increase in aggressive user behaviour on so-
cial media platforms, usually exhibited via the use of targeted or untargeted
hateful and offensive language. This has encouraged NLP researchers to work in
this field and develop automatic detection systems to preemptively discard such
posts. The term hate speech was coined by [4]. Hate speech detection proposed
by [5] used a Convolutional Neural Network with Word2Vec for classifcation.
Schmidt and Wiegand [6] gave a detailed survey on hate speech detection using
Natural Language Processing. They identified various features for hate speech
like words, sentiment, linguistic, etc. After performing various experiments they
observed that, bag of words or word embedding based representation gave better
classification results, a character-level approach works better than token-level,
sometimes the text may not contain hate speech but it may be accompanied by
images or other media which might contain hateful messages.

Recent work on the topic by [7] has focused on the type and target of the
offensive language and was the first to categorically define offensive language.
They created a dataset based on these distinctions which was used to train
models utilizing SVM, BiLSTM and CNN.

3 Dataset

The datasets provided by the organizers [3] were annotated in a hierarchical
fashion. Table 1 shows detailed analysis of the provided datasets.



Table 1. Details of Dataset Provided

Details # Posts in Train Data # Posts in Test Data

TASK A
Hate and Offensive posts (HOF)
Non Hate and Offensive posts (NOT)

5852
2261
3591

1152

TASK B
Hate (HATE)
Offensive (OFFN)
Profane (PRFN)

2261
1143
667
451

TASK C
Targeted Insult (TIN)
Untargeted insult (UNT)

2261
2041
220

It can be observed from Table 1 that the train data for TASK-A consists of 61%
Non Hate posts and 39% were classified as hateful, offensive or profane, whereas
TASK-B has a distribution of approximately 50% Hate , 30% Offensive and 20%
Profane posts, and more than 90% of the TASK-C dataset are posts which are
targeted insults and the remaining are untargeted insults.
Therefore, only 39% of the given data can be used for training further tasks.
There is a huge imbalance in TASK-C data.
The authors have provided 1153 posts for testing, which were to be filled based
on a prediction of model.

4 Proposed Method

For our experiment we used two approaches. For the first approach we repre-
sented the input features using CountVectorizer and Tfidf, which were then used
to train logistic regression and Naive-Bayes classifiers. The models used were im-
ported from the Scikit-learn Python package.
Our second implementation took inspiration from [8]. Our model used a hier-
archical CNN i.e 3 layers of 1D convolution. The words were represented using
pre-trained GloVe [9] 200d vectors. No data pre-processing was performed by in
any of the experiments.

5 Results

The organizers had allowed a maximum of 3 submission for each sub-tasks.
Macro F1 Score was the primary metric for evaluation. Table 2 shows results
obtained by our methods and that of top performed of each task. Figure 1, 2, 3
show confusion matrix of our best performing system for all three sub-tasks.

6 Conclusion

In this paper we have presented two approaches to solve the hierarchical task of
detecting and classifying hate speech and offensive posts. The accuracy of our



Table 2. Results obtained for English Dataset

Method/ Technique used
Obtained Result (Macro F1 score)
TASK-A TASK-B TASK-C

Convolutional Neural Network 0.6216 0.4021 0.4303

CountVectorizer + Navie Bayes 0.6387 0.3137 0.4236

CountVectorizer + Logistic Regression 0.6472 0.4068

Top Performer of each task 0.7882 0.5446 0.5111

Fig. 1. TASK-A CountVectorizer + LR Fig. 2. TASK-B:CountVectorizer + LR

Fig. 3. TASK-C: Convolutional Neural Network

methods did not cross 70% for any of the sub-tasks. The methods used did not
perform well when for the sub-task B, a possible reason for it may have been
that, the model could not differentiate between profane, hateful and offensive
posts properly. Our future experiments will try to solve the problem of class
imbalance by using data augmentation and explore the efficiency of pre-trained
language models like ULMFit, XLNet, RoBERTa for tackling this hierarchical
task.
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