
An Assessment Scheme for Student Development
Projects with Software Industry Experience

Rafa l W lodarski1, Aneta Poniszewska-Marańda1[0000−0001−7596−0813], and
Anna Śniegula1

Institute of Information Technology, Lodz University of Technology, Lodz, Poland
rafal.wlodarski@edu.p.lodz.pl, aneta.poniszewska-maranda@p.lodz.pl,

anna.sniegula@edu.p.lodz.pl

Abstract. Numerous attempts were taken to define criteria against
which to evaluate and measure software project success. The complex-
ity that surrounds it has been recognized by companies, however the
scholarly world is yet to follow. In this article, three dimensions of suc-
cess have been elicited basing on prior industrial studies: project quality,
project efficiency as well as social factors (teamwork quality and learning
outcomes).

Keywords: software projects evaluation · project success · project qual-
ity · project efficiency · capstone project · academic context

1 Introduction

Over the course of history, the approach to evaluation of students’ work has
greatly evolved. It begun as straightforward grading systems [1, 2] that assessed
level of assimilation of knowledge and shifted to project-based pedagogy that
favours active exploration of real-world challenges and privileges soft skills devel-
opment. While project success is now regarded as a multidimensional construct,
no framework that evaluates its different facets in case of students’ work has
been published.

Although studies devoted to the definition and measurement of success of
industrial software development proliferate , in an academic context the same
subject attracts little attention and focused on the source code by means of
mining the repository data.

In this paper we refine the earlier established metrics, categorize them along
the proposed success dimensions, provide necessary adaptations for an academic
setting and generalize them so that they can be applied to a broad spectrum of
student software undertakings.

The paper is structured as follows: the three dimensions and their measure-
ment methods are detailed in sections two, three and four respectively. Threats
to validity and a discussion part conclude the article in section five.

112Copyright © 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

2 Project quality

A research of Paul Ralph and Paul Kelly [3] that examines the dimensions of
success in software engineering, yields 11 themes with project being the most
relevant and central concept. A study executed at Microsoft [4] confirms the
finding that data on quality is the most important to the stakeholders of a
software development project. The proposed evaluation approach makes a dis-
tinction between internal and external quality and proposes dedicated measures
for both.

2.1 Internal quality

Researchers in computer science and commercial institutions have been prolific
in defining software quality metrics. Its general notion encompasses an array of
aspects the taxonomy of which was defined in the ISO/IEC 25010 international
standard on software product quality [19]; it embraces facets pertaining to both
functionality and technical traits. The focus of the upcoming section is on the
latter, which is grounded in the source code base. A version control system,
employed to a large extent in computer science related courses, can be used as
an insightful source for calculation of structural code-level metrics and tracking
data. Source code and the compliance with continuous integration practice are
regarded as two major factors influencing internal project quality in the proposed
evaluation scheme.

Complex code structures are proven to be difficult to understand and more
likely to generate errors as compared to a well-designed module [7]. Complexity
has a direct impact on the quality of a product, its maintainability and ease of
troubleshooting. A common measure used in the industry is Cyclomatic Com-
plexity as it proved to reveal insight on internal code quality.

Code complexity and size measure Cyclomatic complexity (CC) determines
complexity of a program by counting the number of decisions (linearly indepen-
dent paths) made in a given source code. It is a standard metric in the industry
and as reported by McGabe Software Company [6], CC meets the three qualities
of a good complexity measure, namely:

– it is descriptive, objectively measuring some quality – decision logic in the
case of CC,

– predictive, correlating with some aspect – errors and maintenance effort,
– prescriptive, as it guides risk reduction – testing and improvement.

Further findings of the Software Assurance Technology Center (SATC) at
NASA [8] concluded that it is a combination of the code size as well as the com-
plexity that proves to most effectively evaluate quality. Source code of significant
size and high complexity bears very low reliability. Likewise, software with low
size and high complexity, as it tends to be written in a very terse fashion, renders
the source code difficult to change and maintain.

113

Maintainability ranking SIG, a software management consulting company,
in collaboration with TV Informationstechnik have developed a measurement
model that maps a collection of source code metrics to all the maintainabil-
ity sub-facets as defined by the ISO 25010 standard: analyzability, modifiability,
testability, modularity and reusability. The technical quality model involves anal-
ysis of the following metrics [22]:

– Lines of Code (LOC), as increasing volume of the codebase implies more
information to be taken into account and entails more maintenance effort,

– duplicated LOC, as repeated, redundant code requires rework of all of its
instances in case of deficiency,

– Cyclomatic Complexity, as the simpler the code is the easier it is to compre-
hend and test,

– parameter counts, as unit interfaces with many attributes can indicate bad
encapsulation [23],

– dependency counts, as tight coupling impedes modifications to the underly-
ing code.

They are collected at different levels of the building blocks of the codebase:
units (e.g. Java methods), modules (e.g. Java classes) or components (e.g. Java
packages) and subsequently aggregated via grand total or quality profiles [23].
This operation allows to correlate its outcome to ratings of properties for the
entire software project: volume, duplication, unit complexity, unit size, unit in-
terfacing, module coupling, component balance and component independence.
Property ratings are mapped to the sub-characteristics of maintainability as de-
fined by ISO 25010 by calculating weighted averages according to dependencies
designated in figure 1: every cross in a given column signifies contribution of a
system property to the given sub-characteristic (row).

Fig. 1. Property ratings mapped to the sub-characteristics of maintainability

Continuous integration First introduced by Booch [9], the concept of con-
tinuous integration aimed at avoiding pitfalls when merging code from different
developers and in turn reduce the time and work efforts engendered by this

114

process. CI rapidly became the industry standard and is now employed in the
academia as well, as effective teamwork in student projects requires regular use
of a version control system. A long-term study by Technical University of Munich
(TUM) [5] reports that CI was perceived as beneficial by 63% of 122 students,
whereas a mere 13% was not in line with that statement.

Data can be collected and assessed with respect to any time frame, e.g.
sprint, month as well an entire semester making this metric easily applicable to
any student undertaking.

2.2 External quality

External product quality is quantified during the testing phase, by dynamic
analysis of the product’s behaviour as observed by its users[22]. Various kinds of
software testing are essential to ensure software functional and technical prod-
uct quality [23] however not all of them can be accommodated in a classroom.
Whereas business projects comprise a dedicated testing phase, managed by a
specialized team and running for several weeks, students usually perform only
a rudimentary test campaign to make sure that the functionality is in place.
That is followed by ad-hoc tests by the instructor at the end of the semester to
evaluate his overall satisfaction level with the delivered product.

In order to address that gap, the authors of this paper propose to define
metrics evaluating a subset of the product quality properties as defined by the
ISO 25010 standard, prior to assignment implementation. That allows to incor-
porate it into the ”Definition of done” criteria for Agile approaches or be used to
guide a dedicated testing phase, when following a more traditional development
lifecycle. In either case the metrics can serve as an evaluative measure of the
project and ease the assessment of solutions for the instructor.

Moreover, students can be challenged to define the metrics themselves to
infuse a real tester’s thinking. Considering the array of possible projects im-
plemented as part of Computer Science coursework and the information-rich
taxonomy of product quality and quality in use, the measures can vary greatly
depending on the type of the developed software system. For embedded systems
projects or the ones based on CPU calculations, a particular focus can be put
on performance efficiency in terms of time behaviour or resources utilization.
Network Programming assignments could target the reliability feature with its
availability and recoverability sub-characteristics.

In one of the authors’ experiences, students whose objective was to implement
an Artificial Conversational Entity supporting e-commerce catalogue browsing
and product advisory, were asked to define a set of efficiency and usability metrics
to assess the chatbots. They were required to:

– frame them according to the Goals-Signals-Metrics process,

– write test cases for evaluation,

– specify the method of metric procurement, the procedure of its collection
and interpretation, and establish supporting tools used.

115

Once the teams documented their proposed metrics, a set of five most suitable
measures to the context was chosen by the course instructors. Thereupon, metrics
acquisition, calculation, storage and results representation method was specified
and provided as a common reference for all the groups. That laid out a foundation
for a ”Jigsaw exercise” (Palacin-Silva et al. [21]) that was performed during
one week of the testing phase when the students evaluated digital assistants
developed by other teams according to a set of defined scenarios.

This approach enables assessment of the external quality aspect of software
produced by students based on objective metrics and a large sample. The scores
can be incorporated into the final grade for the projects, in turn facilitating
solutions evaluation for the instructors.

3 Project efficiency

From a classical project-management point of view the underpinning of a pro-
cess’s success is respect of underlying budget and time constraints. Indeed, a
systematic literature review of 148 papers published between 1991 and 2008 [13]
revealed that Effort and Productivity were defined as success indicators in 63%
of studies of process improvement initiatives. Simply put, effort is reflected by
the amount of time invested by the team and productivity by the output size
in KLOC (kilo lines of code) [14] produced in the context of the development
process. This paper proposes more comprehensive ways of evaluating a project
in terms of efficiency and team productivity, as an incentive to produce large
amount of code can have adverse effects on project quality (Fig. 2).

Fig. 2. Project efficiency metrics, calculation method and aspect evaluated

116

4 Social factors

According to the study by Hoegl and Gemuenden [10] there are three leading
factors that shape the success of innovative projects:

– team performance,
– teamwork quality,
– personal success.

While the efficiency aspect and its significance have already been covered,
the following section focuses on teamwork as part of university classes and stu-
dents’ accomplishment. The objective of computer science higher education is
to prepare corporate-ready graduates to be apt at programming and equipped
with practical skills such as efficient collaboration and effective communication
which can be developed while carrying out team projects. To assess growth in
these areas, measurement methods of the teamwork quality as well as learning
outcomes of students are proposed.

The evaluative tools described in this section can only be examined in a
qualitative manner. The most straightforward and common way of doing so is
through the use of opinion polls [5, 18, 20]. For the purpose of the proposed
assessment scheme, it is suggested that all statements should be evaluated by
students on a 4-degree Likert scale (as it leaves more space for nuance and omits
a neutral answer): strongly agree, agree, disagree, strongly disagree.

4.1 Teamwork quality

Teamwork quality is a measure of conditions of collaboration in teams; according
to Hoegl and Gemuenden [10] it consists of six facets: communication, coordi-
nation, balance of member contributions, mutual support, effort and cohesion.
Capturing any of these properties of cooperation within a group is a baffling task,
hence the most representative of these characteristics is examined – cohesion.

Team cohesion Team cohesion is defined as the ”shared bond that drives team
members to stay together and to want to work together” [12]. As stated in [11]
cohesion is highly correlated with project success, critical for team effective-
ness and leads to increased communication and knowledge sharing. As cohesion
emerges over time and its perception among the group variates as the project
progresses [11], its investigation needs to be carried out periodically. There are
no restriction on the time intervals but they should be frequent enough for the
assessment to stay pertinent, e.g. every sprint or month.

In the context of Software Engineering, two dimensions of cohesion can be dis-
tinguished: attachment within the team (social cohesion S [11]) and attachment
to the project (task cohesion T [11]). It can be further categorized according to
granularity: at project member level (Individual Attractions to the Group ATG
[11]) and team level (Group Integration GI [11]). These two distinction levels
yield the following aspects of cohesion:

117

– GI-T: The team’s attachment to the task,
– GI-S: The team’s social connection,
– ATG-T: Individual attachment to the task,
– ATG-S: Individual connection to the team.

Team morale A common observation is that successful teams are happy and
as such, they are efficient and produce quality results [21]. Measuring happiness
has been gaining popularity in Agile software development frameworks as they
emphasize teamwork and recognize its human aspect. The most common practice
measures a happiness index by employing a Niko-niko calendar, also known as
smiley calendar, where team members systematically rate their mood with a
smiling, straight-faced, or frowning smiley. As appealing as that might be to
students, in order to evaluate teamwork quality and personal success at the same
time one should investigate team morale instead. Its classical meaning reflects
a sense of common purpose and the amount of confidence felt by a person or
group of people. In a commercial setting it is linked to job satisfaction, outlook,
and feelings of well-being an employee has within a workplace setting which also
resonate with conditions a university course should provide.

4.2 Learning outcomes and skills

A final facet of project success is personal accomplishment of its participants.
Although it might not be apparent to students, it is their learning outcomes and
improved skills that are of paramount importance in that subject matter. Em-
ployers emphasize that both technical and soft skills are essentials for implemen-
tation of successful software projects. A study by Begel et al. [16] on struggles of
new college graduates in their first development job at Microsoft finds that they
have difficulties in teamwork and cognition areas. Brechner [17] suggests they
should participate in dedicated courses in Design Analysis and Quality Code as
part of their education in order to address the identified qualifications gap.

The proposed scheme evaluates student competencies divided into two cate-
gories, along with their their constituents:

1. Software engineering skills, that encompass: requirements elicitation, system
design, data modelling, programming.

2. Non-technical skills, that encompass: communication, teamwork.

To increase the validity of the evaluation, the professor can contribute to
the process by assessing the produced artefacts. Clark [20] has mapped learning
outcomes and skills to corresponding assessment tasks as part of his study on
student teams developing industry projects; its version enriched with evaluation
tools described in this article is presented in table 1.

5 Conclusions

This paper provides professors and researchers an approach for the evaluation of
computer science project success that encompasses three dimensions, further di-
vided into sub facets and addressed with a specific metric, measure or pedagogic

118

Table 1. Learning outcomes and graduate skills – mapping of projects’ outcomes,
developed skills along with artefacts and proposed measures that can be used for their
evaluation

Learning Outcomes Graduate Skills Assessment Artefacts
Working in a team, students will be
able to question a client/professor to
extract and analyse the software re-
quirements and present the analysis in
a written report.

Software engineering
skills – requirements
elicitation. Communi-
cation skills.

Requirements documentation (UML
diagrams, Functional Requirements
Document, User Interface Specifica-
tion). User stories.

Having analysed the requirements,
students will be able to prepare appro-
priate design documents while work-
ing in a team.

Software engineering
skills: - system design, -
data modelling

System architecture diagram, De-
tailed Design document, Database
model, Data structure diagram,
Entity-relationship model, Wire-
frames.

Having prepared design documents,
students will be able to construct and
integrate a significant software system
while working in a team.

Software engineering
skills: - programming,
- version control.
Team-working skills.

Developed software evaluated along
its internal and external quality as-
pects Repository (Pacemaker: Com-
mit pulse metric).

Having developed a software system,
students will be able to produce writ-
ten technical and instructive docu-
mentation on the implemented solu-
tion.

Communication skills User manual. Installation guide.

Students will be able to formulate a
schedule for a team of people and indi-
vidually and collectively manage their
time.

Team-working skills.
Communication skills.

Issue and project tracking software
(Processing Interval metric, Work In
Progress metric). Time reports. Risks
document.

Students will be able to work in a
small team, planning effectively and
be able to evaluate their own and
peers performance at team and indi-
vidual activities.

Team-working skills.
Communication skills.

Issue and project tracking software.
Team cohesion questionnaire.

tool. A description of the metrics and necessary adaptations for an academic
context is provided, along with a discussion of the validity and appropriateness
of the proposed measures for their intended use. The work described in this
article has a number of implications.

The proposed evaluation approach contributes to the field of software en-
gineering in terms of empirical research methods. First off, it can serve as an
analytical framework for scientists investigating the applicability of software de-
velopments methodologies to a university setting. It determines areas of focus for
evaluation, which can underpin given hypotheses and suggests dedicated metrics
and measures that can be used for their verification. Moreover, as it provides
a set of measures and pedagogic tools that are course organization-agnostic it
can be applied to compare different development methodologies in terms of the
project outcomes and process-related attributes.

References

1. G. Pierson, ”C. Undergraduate Studies: Yale College”, Yale Book of Numbers.
Historical Statistics of the College and University 17011976, New Haven: Yale
Office of Institutional Research, 1983.

2. N. Postman, ”Technopoly The Surrender of Culture to Technology”, New York:
Alfred A. Knopf, 1992.

119

3. P. Ralph and P. Kelly, ”The Dimensions of Software Engineering Success”, 2014.
4. R. Buse and T. Zimmermann, ”Information needs for software development an-

alytics”, Proc. of 20th International Conference on Software Engineering, IEEE
Press, pp. 987–996, 2012.

5. B. Bruegge and S. Krusche and L. Alperowitz, Software Engineering Project
Courses with Industrial Clients”, 2015.

6. McCabe Associates, ”Integrated Quality” as part of CS699 Professional Seminar
in Computer Science, 1999.

7. B. Kitchenham and S. Pfleeger, ”Software Quality: The Elusive Target”, IEEE
Software, 1996.

8. L. Rosenberg and T. Hammer, ”Software metrics and reliability, NASA GSFC,
1998.

9. G. Booch, ”Object Oriented Design: With Applications”, 1991.
10. M. Hoegl and H. Gemuenden, ”Teamwork Quality and the Success of Innovative

Projects: A Theoretical Concept and Empirical Evidence”, Organization Science,
vol. 12, 2001.

11. A. Carron and L. Brawley, ”Cohesion: Conceptual and Measurement Issues”, Small
Group Research 31, 2000.

12. M. Casey-Campbell and M. Martens, ”Sticking it all together: A critical assessment
of the group cohesion-performance literature”, 2008.

13. M. Unterkalmsteiner and T. Gorschek, ”Evaluation and Measurement of Software
Process Improvement – A Systematic Literature Review”, IEEE Transactions on
Software Engineering, 2012.

14. S. Ilieva and P. Ivanov and E. Stefanova, ”Analyses of an agile methodology im-
plementation”, Proc. of 30th EUROMICRO Conference, 2004.

15. M. Ochodek and J. Nawrocki, ”Simplifying effort estimation based on Use Case
Points”, Information and Software Technology, 2011.

16. A. Begel and B. Simon, ”Struggles of New College Graduates in their First Soft-
ware Development Job”, Proc. of 39th SIGCSE technical symposium on Computer
science education, 2008.

17. E. Brechner, ”Things They Would Not Teach Me of in College: What Microsoft
Developers Learn Later”, ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, 2003.

18. G. Melnik and F. Maurer, ”A Cross-Program Investigation of Students Perceptions
of Agile Methods”, International Conference on Software Engineering, 2005.

19. ISO/IEC25010: 2011 Systems and software engineering, 2011.
20. C. Clark, ”Evaluating student teams developing unique industry projects”, Proc.

of 7th Australasian Conference on Computer Education, 2005.
21. M. Palacin-Silva and J. Khakurel and A. Happonen, ”Infusing Design Thinking

Into a Software Engineering Capstone Course”. Proc. of 30th IEEE Conference on
Software Engineering Education and Training (CSEE&T), 2017.

22. D. Bijlsma and M. Ferreira and B. Luijten and J. Visser, ”Faster Issue Resolution
with Higher Technical Quality of Software”, Software Quality Journal, 20(2), pp.
265-285, 2012.

23. R. Baggen and J. Correia and K. Schill and J. Visser, ”Standardized code quality
benchmarking for improving software maintainability”, Software Quality Journal,
20(2), pp. 287–307, 2012.

24. A. Albrecht, ”Measuring Application Development Productivity”, Proc. of Joint
SHARE, GUIDE, and IBM Application Development Symposium, pp. 83-92, 1979.

120

