
Counting Triangles under Updates?

Ahmet Kara1, Hung Q. Ngo2, Milos Nikolic1, Dan Olteanu1, Haozhe Zhang1

1 University of Oxford 2 RelationalAI, Inc.

1 Problem Setting and Contributions

We consider the problem of maintaining the result of the triangle count query
Q() = Γ;sumR(A,B) on S(B,C) on T (C,A) under single-tuple updates to the
input relations R, S, and T . The relations are given as key-payload maps whose
keys are tuples over relation schemas, payloads are tuple multiplicities, and key
lookups are (amortized) O(1)-time operations. A single-tuple update δR(a, b) =
{ (a, b) 7→ p } to relation R maps a key (a, b) to a nonzero payload p (positive
for inserts and negative for deletes); updates to S and T are analogous.

The näıve maintenance approach recomputes the triangle count from scratch
after each update. Computing this query using worst-case optimal join algo-
rithms [5] takes O(N1.5) time, where N is the current size of the input database.

To incrementally maintain the triangle count under single-tuple updates,
existing incremental view maintenance (IVM) approaches need linear time. For
instance, under the update δR to R, the classical IVM [2] computes the delta
query Γ;sum δR(a, b) on S(b, C) on T (C, a) in O(N) time because it needs to
intersect two lists of possibly linearly many C-values that are paired with b in
S and with a in T . The factorized IVM [6] materializes the view VST (B,A) =
ΓB,A;sum S(B,C) on T (C,A) using O(N2) space. It then computes the delta
query Γ;sum δR(a, b) on VST (b, a) in O(1) time; however, updates to S and T still
require O(N) time to maintain the triangle count Q and view VST .

This raises the question of whether the triangle count can be maintained in
sublinear time. Recent work proves that no algorithm can maintain Q in time
O(N0.5−γ) for any γ > 0, under reasonable complexity-theoretic assumptions [1].
An algorithm with sublinear maintenance time for Q is not yet known.

This work introduces IVMε, an IVM approach that maintains the triangle
count in amortized sublinear time. IVMε partitions each input relation into two
parts, heavy and light, based on the degrees of data values, the database size, and
a parameter ε. It then adapts the maintenance strategy to different heavy-light
combinations of parts of the input relations to achieve worst-case sublinear main-
tenance. As the database evolves under updates, IVMε rebalances the partitions
to account for a new database size and updated degrees of data values. While
this rebalancing may take superlinear time, it remains sublinear per update.

Given a database of size N and ε ∈ [0, 1], IVMε maintains the triangle count
in O(Nmax{ε,1−ε}) amortized time while using O(N1+min{ε,1−ε}) space. It thus
defines a continuum of approaches exhibiting a space-time tradeoff based on ε.

? An extended version of this work is available online [3].

Materialized View Definition Space Complexity

Q() =
⋃
u,v,w∈{h,l} Γ;sum Ru(A,B) on Sv(B,C) on Tw(C,A) O(1)

VRS(A,C) = ΓA,C;sum Rh(A,B) on Sl(B,C) O(N1+min {ε,1−ε})

VST (B,A) = ΓB,A;sum Sh(B,C) on Tl(C,A) O(N1+min {ε,1−ε})

VTR(C,B) = ΓC,B;sum Th(C,A) on Rl(A,B) O(N1+min {ε,1−ε})

Fig. 1. The materialized views used by IVMε for a database of size N and ε ∈ [0, 1].

Setting ε = 0.5 gives O(N0.5) amortized worst-case optimal time and O(N1.5)
space utilization. Existing IVM approaches are extreme points in this continuum
of approaches defined by IVMε. For instance, to recover classical IVM, we set
ε ∈ {0, 1} to achieve O(N) update time and O(N) space utilization; to recover
factorized IVM, we set distinct parameters ε for each relation (cf. [3] for details).
IVMε can also count all triangles in a static database in worst-case optimal time
O(N1.5) by inserting N tuples, one at a time, into initially empty relations.

2 Adaptive Maintenance Strategy

We split each input relation into two disjoint parts, called heavy and light parts.
Given εR ∈ [0, 1], an A-value a is heavy in R if |σA=aR| ≥ N εR , where N is the
database size; otherwise, it is light. We partition R into Rh and Rl such that
Rh = { t ∈ R | t.A is heavy } and Rl = R \ Rh; similarly, we partition S on B,
and T on C. In the following, we assume that ε = εR = εS = εT is fixed.

We decompose the query Q into skew-aware views expressed over the relation
parts: Quvw() = Γ;sumRu(A,B) on Sv(B,C) on Tw(C,A), where u, v, w ∈ {h, l}.
The query Q is thus a union (sum) of partial counts: Q() =

⋃
u,v,w∈{h,l}Quvw().

We adapt the maintenance strategy to each skew-aware view to ensure sub-
linear update time. While most of these views admit sublinear delta computa-
tion, few exceptions require linear-time maintenance. For these exceptions, IVMε

precomputes the update-independent parts of delta queries as materialized views
and uses them to speed up the delta evaluation. Such auxiliary views also require
maintenance, yet their maintenance cost is sublinear for single-tuple updates.

Figure 1 shows the materialized views used by IVMε to maintain the triangle
count query. The size of the view VRS(A,C) is upper-bounded by the size of the
result of the join of Rh(A,B) and Sl(B,C) in two distinct ways. One can iterate
over all (a, b) pairs in Rh and then find the C-values in Sl for each b. Since
Sl contains only tuples with light B-values, there are at most N ε distinct C-
values for each B-value. This gives an upper bound of O(|Rh| ·N ε) = O(N1+ε).
Alternatively, one can iterate over all (b, c) pairs in Sl and then find the A-
values in Rh for each b. Since Rh contains only tuples with heavy A-values,
there are at most N

Nε = N1−ε distinct A-values. This gives an upper bound of
O(|Sl| ·N1−ε) = O(N2−ε). The overall space complexity is the minimum of the
bounds. The space analysis for VST and VTR is analogous.

We explain our adaptive strategy on a single-tuple update δR∗(a, b) to rela-
tion R. This update can affect either the heavy or light part of R, hence the ∗

Delta Evaluation Strategy Time Complexity

δQ∗hh() = δR∗(a, b) ·
∑
C Th(C, a) · Sh(b, C) O(N1−ε)

δQ∗hl() = δR∗(a, b) · VST (b, a) O(1)

δQ∗lh() = δR∗(a, b) ·
∑
C Th(C, a) · Sl(b, C) or

O(Nmin {ε,1−ε})
= δR∗(a, b) ·

∑
C Sl(b, C) · Th(C, a)

δQ∗ll() = δR∗(a, b) ·
∑
C Sl(b, C) · Tl(C, a) O(N ε)

δQ() = δQ∗hh() + δQ∗hl() + δQ∗lh() + δQ∗ll() O(1)

δVRS(a,C) = δRh(a, b) · Sl(b, C) O(N ε)

δVTR(C, b) = δRl(a, b) · Th(C, a) O(N1−ε)

Fig. 2. Computing the deltas of the views from Figure 1 for an update δR∗(a, b) to
the heavy or light part of R. The symbol ∗ stands for h or l. The delta δVST is empty
since VST does not refer to R. The evaluation order of deltas is from left to right.

symbol; we assume that checking whether a is heavy or not in R is a constant-
time operation. Updates to the other two relations are handled similarly.

Figure 2 shows the deltas of the views affected by the update δR∗(a, b) and
their time complexity when evaluated from left to right. In all but one case, the
complexity is determined by the number of C-values that need to be iterated
over. Computing the deltas involves multiplying the payloads of matching tuples
and, if C is not in the target view schema, summing them over C-values.

We first analyze the access patterns of the skew-aware delta views: (1) For
δQ∗hh, we iterate over at most N1−ε C-values in Th for the given a and then look
up in Sh for each (b, c); (2) For δQ∗hl, we look up in the materialized view VST
for the given (a, b); (3) For δQ∗lh, we either iterate over at most N1−ε C-values
in Th for the given a and look up in Sl for each (b, c), or we iterate over at most
N ε C-values in Sl for the given b and look up in Th for each (c, a); (4) For δQ∗ll,
we iterate over at most N ε C-values in Sl for the given b and then look up in Tl
for each (c, a). Then, summing these partial deltas and updating Q take constant
time. The views VRS and VTR, which facilitate updates to T and respectively
to S, are maintained for updates to distinct parts of R. Computing δVRS and
updating VRS requires iterating over at most N ε C-values in Sl for the given
b; similarly, computing δVTR and updating VTR involves at most N1−ε heavy
C-values in Th. The final step of IVMε updates the (heavy or light) part of R
that corresponds to δR∗ in (amortized) O(1) time. Overall, IVMε maintains the
views from Figure 1 under single-tuple updates to any of the input relations in
O(Nmax{ε,1−ε}) time using O(N1+min{ε,1−ε}) space.

An insert (a, b) into R may promote a from light to heavy in R or may
increase the heavy-light threshold such that some A-values change from heavy
to light. Without rebalancing the partitions, our assumptions on the number of
B-values paired with a or the number of heavy A-values may become invalid.

IVMε loosens the partition threshold to amortize the cost of rebalancing
over multiple updates. Instead of the actual database size N , the threshold now

depends on a variable M for which the invariant b 14Mc ≤ N < M always holds.
If the database size violates one of the limits, we perform major rebalancing
where we double or halve M to satisfy the invariant again, repartition the input
relations using the new threshold M ε, and recompute the auxiliary views. The
time complexity of this operation is O(M1+min{ε,1−ε}), which is amortized over
at least d 14Me updates between two major rebalancing steps.

IVMε also enforces the following two invariants: The number of tuples with
the same value of the partitioning attribute is less than 3

2M
ε in each light part

and at least 1
2M

ε in each heavy part. If any of the two invariants is violated, we
perform minor rebalancing where we move at most d 32M

εe tuples from one part
to another and update the affected views. The time complexity of this operation
is O(M ε+max{ε,1−ε}), which is amortized over at least d 12M

εe updates between
two minor rebalancing steps for the same value of the partitioning attribute.

In conclusion, both rebalancing steps together take O(Mmax{ε,1−ε}) amor-
tized time. Since each single-tuple update can be realized in timeO(Mmax{ε,1−ε})
and M = O(N), IVMε needs O(Nmax{ε,1−ε}) overall amortized time. The ex-
tended version of this work presents a detailed complexity analysis of IVMε [3].

3 Beyond the Triangle Query

IVMε can be applied to any query but may not always yield asymptotic improve-
ments over existing approaches. It can achieve sublinear maintenance for the
counting variants of acyclic queries, e.g., 3-path and 4-path, and cyclic queries,
e.g., Loomis-Whitney and 4-cycle. Different semirings can be used to specifiy op-
erations on the payloads [6]; we used here (Z,+, ∗, 0, 1) to express counting. An
early prototype implementation of IVMε on top of DBToaster [4] shows several
factors performance improvement over classical and factorized IVM.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
682588. The first author acknowledges funding from Fondation Wiener Anspach.

References

1. Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive
Queries under Updates. In PODS, pages 303–318, 2017.

2. Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends in DB,
4(4):295–405, 2012.

3. Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Count-
ing triangles under updates in worst-case optimal time. CoRR, abs/1804.02780,
2018. URL: http://arxiv.org/abs/1804.02780.

4. Christoph Koch, Yanif Ahmad, et al. DBToaster: Higher-order Delta Processing for
Dynamic, Frequently Fresh Views. VLDB J., 23(2):253–278, 2014.

5. Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew Strikes Back: New Develop-
ments in the Theory of Join Algorithms. SIGMOD Record, 42(4):5–16, 2013.

6. Milos Nikolic and Dan Olteanu. Incremental View Maintenance with Triple Lock
Factorization Benefits. In SIGMOD, 2018. (to appear).

