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Abstract. Parallelization of generalized matrix-matrix multiplication
is crucial for achieving high performance required in many situations.
Parallelization performed using contemporary compilers is not sufficient
enough to replace expert-tuned multi-threaded implementations or to
get close to their performance. All competitive solutions require previ-
ously optimized external implementations that cannot be available for a
given type of data and hardware architecture. In the paper, we introduce
an automatic compiler transformation that does not require an external
code or automatic tuning to attain more than 85% of performance of
an optimized BLAS library. Our optimization shows competitive perfor-
mance across various hardware architectures and in the case of different
forms of generalized matrix-matrix multiplication. We believe that avail-
ability of multi-threaded implementations of generalized matrix-matrix
multiplication can save time when any optimized libraries are not avail-
able.

Keywords: high-performance, multicore, compilers, mathematical soft-
ware, computations on matrices, linear algebra algorithms

1 Introduction

Let A, B, and C be appropriately sized matrices containing elements in a set S;
and let S and operations ⊕ and ⊗ be contained in a closed semiring [1]. Then
the formula C ← α ⊗ C ⊕ β ⊗ A ⊗ B, where ⊕ and ⊗ operations from the
corresponding matrix semiring, and α and β are constants that are not equal to
zero, is a generalized matrix multiplication or matrix multiply-and-add operation
(MMA) [2].

MMA is important in many situations. For instance, it can be used to solve al-
gebraic path problems (APPs) such as finding shortest connecting paths, finding
the least and the most reliable paths, finding paths with maximum capacity, or
finding paths with maximum cost. Examples of their usage are finding directions
between physical locations, such as driving directions on web mapping websites
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like MapQuest or Google Maps [3], applications studied in operations research,
robotics, plant and facility layout, transportation, and VLSI design [4]. There are
various applications of general matrix-matrix multiplication MMA with ⊕ = +
and ⊗ = ×. General matrix-matrix multiplication can be used for encoding the
database before it goes for data mining in a centralized environment [5]. It can
be also used during the computation in convolution layers of the Convolutional
Neural Networks [6] applied in machine learning. Another example of its appli-
cation is solving the inverse structural gravity problem of mathematical physics
using the Levenberg-Marquardt algorithm [7]. Matrix-matrix multiplication can
be applied in the calculation of the RI-MP2 correlation energy of a molecule stud-
ied by quantum chemistry [8]. General matrix-matrix multiplication is typically
a building block for other matrix-matrix operations studied in high performance
computing [9].

Contemporary compilers and compiler front ends (e.g., GCC [10], Clang [11],
ICC [12], IBM XL [13]) cannot automatically transform a textbook style imple-
mentation of general matrix-matrix multiplication into a code that comes close
to the performance of expert-tuned multi-threaded implementations of MMA.
Specialized libraries (e.g., Intel’s MKL [14], BLIS [15], OpenBLAS [16]) provide
high-performance implementations of general matrix-matrix multiplication, but
nevertheless these approaches require previously optimized external code and
can only be used if an optimized implementation is available [17].

The work presents a new compiler optimization for MMA based on the Polly
loop optimizer [18]. It is aimed to close the performance gap between compilers
and expert-tuned multi-threaded libraries.

Our contributions are
– an automatic transformation for parallelizing MMA based on the computa-

tional structure proposed by the BLIS framework (Section 4.3);
– comparison of our approach to existing production compilers and vendor

optimized BLAS libraries: we attain more than 85% of performance of the
multi-threaded instances of general matrix-matrix multiplication that are
available in optimized BLAS libraries (Section 5).

2 Background

In this section, we briefly describe the polyhedral model, i.e. a mathematical
framework for loop nest optimizations, which is used to focus on modeling and
optimization of the memory access behavior of a program [19,20].

For Static Control Parts (SCoPs) [21,22], i.e. program regions that are “suf-
ficiently regular” to be modeled, each compute statement is described by three
components: iteration domain, scheduling function, and access relation. An itera-
tion domain is represented as a Z-Polytope [23] describing the dynamic instances
of the SCoP statement. A scheduling function is represented by a Z-Polytope
that relates dynamic statement instances to their execution time vectors defining
the execution order. An access relation is described using a Z-Polytope defining
the relation between iteration vector and the accessed array subscript.
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3 Automatic Detection of Kernel

In the paper, we consider optimization of MMA-like kernels introduced in Polly [18].
They have the following definition:

Definition 1. A generalized matrix multiplication-like kernel (MMA-like ker-
nel) is a perfectly nested loop nest such that

– it satisfies the requirements of the polyhedral model;
– without loss of generality, it contains three one-dimensional for loops Loop

1, Loop 2, and Loop 3 with induction variables i, j, and p, respectively, that
are incremented by one;

– the innermost loop body is representable as a statement of the form C[i][j]
= E(A[i][p], B[p][j], C[i][j]), where A[i][p], B[p][j], C[i][j] are accesses to
matrices A, B, C, respectively, and E is an expression that contains reads
from the matrices A, B, C and an arbitrary number of reads from constants
with respect to Loop 1, Loop 2, and Loop 3.

To detect and subsequently optimize the SCoP statements that implement
MMA-like kernels, we use the algorithm that is based on the analysis of mem-
ory accesses and memory dependencies implemented in Polly. Its description is
beyond the scope of our paper. MMA is a particular case of MMA-like kernel.
We consider how it affects the optimization in Section 4.3.

4 Optimizing MMA-like kernel

In this section, we present an algorithm for obtaining the code structured simi-
lar to an expert-optimized multi-threaded general matrix-matrix multiplication.
Firstly, we consider the expert-designed multithreaded general matrix-matrix
multiplication and then discuss our optimization.

4.1 The expert implementation of general matrix-matrix
multiplication

An example of an expert implementation of the general matrix-matrix multipli-
cation algorithm (i.e. an implementation that was tuned by dense linear algebra
experts) can be found in BLIS [15]. It consists of two packing routines and five
loops around the micro-kernel. Packing routings perform copying the data of
matrices A and B (that are operands of the MMA-like kernel) to created ar-
rays Ac and Bc, respectively, to ensure that their elements are aligned to cache
lines boundaries, preloaded in certain cache levels, and read in-stride access [24].
The micro-kernel is a loop around an outer product that can be implemented in
assembly. The micro-kernel and two surrounding loops form the macro-kernel.
Pseudo-code of the described implementation can be found in Listing 1.

Determination of Mc, Nc,Kc,Mr, and Nr parameters of the described im-
plementation can be done manually or using an analytical model [24]. We use
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an analytical model for determination of parameters of single-threaded MMA-
like kernels presented in Polly [18]. Determination of optimal values for multi-
threaded implementation is only partially considered in [25] and can be direction
of the future work.

Loop1: for (j = 0; j < N; j += Nc)

Loop2: for (p = 0; p < K; p += Kc) {

// Pack into Bc

Copy0: B(p:p + Kc - 1, j:j + Nc - 1) → Bc

Loop3: for (i = 0; i < M; i =+ Mc) {

// Pack into Ac

Copy1: A(i:i + Mc - 1, p:p + Kc - 1) → Ac

// Macro -kernel

Loop4: for (jc = 0; jc < Nc; jc += Nr)

Loop5: for (ic = 0; ic < Mc; ic += Mr) {

// Micro -kernel

Loop6: for (pc = 0; pc < Kc; pc++)
S: Cc(ic:ic + Mr - 1, jc:jc + Nr - 1)

+= Ac(ic:ic + Mr - 1, pc)
* Bc(pc, jc:jc + Nr - 1)

}

}

}

Listing 1: The implementation of general matrix-matrix multiplication of BLIS

4.2 Expert implementation of multi-threaded general matrix-matrix
multiplication

The implementation of general matrix-matrix multiplication in BLIS consists of
five loops that can be parallelized. To find the loop that should be parallelized to
obtain the best performance gain, the parameters of the target architecture (e.g.,
the availability of the L3 cache, the ability to share L2 and L3 caches between
threads, the support of the cache coherency) along with values of parameters of
the implementation need to be considered [25](i.e., M , Mc, Mr, N , Nc, Nr). In
the paper, we discuss the automatic parallelization of the second loop around
the micro-kernel (i.e., indexed by jc). In case the ratio of Nc to Nr is large,
which is usually the case, it gives good opportunities for parallelism [25] helping
to amortize the cost of transferring of the block of Ac from the main memory
into the L2 cache and to reduce the execution time of general matrix-matrix
multiplication.
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4.3 An automatic parallelization of MMA-like kernel

In this subsection, we consider the algorithm for automatic parallelization im-
plemented in Polly along with its modifications helping to apply it in the case
of MMA-like kernels and, in particular, general matrix-matrix multiplication.

Polly can detect the outermost loop of the loop nest that can be executed in
parallel to generate the OpenMP [26] code and to take advantage of shared mem-
ory parallelism in a SCoP [18]. To do it, Polly uses the dependence analysis [18]
to discover data dependencies among program statements. A data dependency is
a situation, in which a program statement refers to the data of a preceding state-
ment [27]. In the case of Polly, data dependencies between program statements
of SCoP statements are considered.

For example, let us consider the matrix-matrix multiplication of the form
C += A×B, where the sizes of the matrices A, B, and C are M×K, K×N , and
M×N , respectively. Listing 2 contains an example of a program that implements
the described matrix-matrix multiplication. In this case, we have only one true
dependency, only one anti dependency, and only one output dependency. The
dependencies have the form S(i, j, p)→ S(i, j, p+ 1).

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

for (p = 0; p < K; p++)

S: C[i][j] += A[i][p] * B[p][j];

Listing 2: Example of matrix-matrix multiplication

We apply Polly to get the code, which is a generalization of the expert im-
plementation of the general matrix-matrix multiplication in terms of the outer
product defined in the semiring representing the multiplication. Subsequently,
we add two output dependencies and two flow dependencies introduced by the
packing routines (Section 4.1). The output dependencies have the following form:
Copy0(j, p, i, jc, ic, pc)→ Copy0(j+Nc, p+Kc, i, jc, ic, pc), Copy1(j, p, i, jc, ic, pc)
→ Copy1(j, p + Kc, i + Mc, jc, ic, pc). The flow dependencies have the follow-
ing form: Copy0(j, p, i, jc, ic, pc) → S(j, p, i, jc, ic, pc), Copy1(j, p, i, jc, ic, pc) →
S(j, p, i, jc, ic, pc). Since jc becomes the outermost parallel loop, it is automati-
cally parallelized by Polly.

5 Experimental Results

We compare performance of the code generated by the presented optimization
to the multi-threaded instances of MMA. The experimental setup is presented
in (Table 1, and Table 2). Throughput and latency of processor floating-point
arithmetic units are denoted by NV FMA and LV FMA, respectively. Sizes of the
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first two cache levels of all CPUs under evaluation are 32 Kbytes and 256 Kbytes,
respectively. Their associativity degrees are equal to 8. Results of measurements
considered in the section are the corresponding arithmetic means collected until
95% confidence intervals to be within 10% of reported means.

Table 1. Experimental setup

Nickname CPU
Clock

LV FMA
1 NV FMA

1
Cores

Socketsspeed Memory per
(GHz) (GB) socket

Intel Intel Core i7-3820
3.6 16 8 1 4 1

Sandy Bridge Sandy Bridge

IBM Power 7 POWER7 3.55 64 12 2 16 1

ARM APM883208-X1 2.4 32 18 1 1 8

Table 2. The software version and additional options

Nickname Version Additional options

polly (original) 6.0.0
-O3 -march=native -mllvm -polly

-mllvm -polly-parallel -lgomp

polly (opt) 6.0.0

-O3 -march=native -mllvm -polly
-mllvm -polly-target-throughput-vector-fma=NV MMA

-mllvm -polly-target-latency-vector-fma=LV MMA

-mllvm -polly-target-1st-cache-level-associativity=WL1

-mllvm -polly-target-2nd-cache-level-associativity=WL2

-mllvm -polly-target-1st-cache-level-size=SL1

-mllvm -polly-target-2nd-cache-level-size=SL2

-ffp-contract=fast -mllvm -polly-parallel -lgomp

gcc 4.9.2 -O3 -march=native -ftree-parallelize-loops=n

icc 16.0.2 -O3 -march=native -parallel

IBM XLC 13.1.2.0 -O3 -qarch=auto -qtune=auto -qsmp=auto

Intel MKL 11.3.2

BLIS 0.2.2

OpenBLAS 0.2.20

We consider the matrix-matrix multiplication of the following form C ←
α ⊗ C ⊕ β ⊗ A ⊗ B implemented in Polybench 3.2 benchmark suite [28] along

1 Values of these parameters that are not publicly available from the vendors’ instruc-
tion set/optimization manuals were determined empirically and can be different from
the real values.
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with the maximum reliability path problem. We evaluate the matrix-matrix for
four data sets defined in Polybench 3.2 benchmark suite: small, standard, large,
and extra large.
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Fig. 1. Matrix-matrix multiplication of matrices that contain elements of type double
in the case of Intel Sandy Bridge, ARM, and Power7 platforms

Figure 1 presents the results of performance evaluation of the implementa-
tion of the matrix-matrix multiplication provided by PolyBench 3.2 benchmark
suite [28] for matrices that contain elements of type double. The maximum num-
ber of threads in the OpenMP parallel region is equal to the number of cores
specified in Table 1. In the case of Intel SandyBridge with different number of
threads, the extra large data set and different values of the maximum number
of threads in the OpenMP parallel region are evaluated. We can conclude that
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the optimization attains more than 85% of performance of the multi-threaded
instances of the matrix-matrix multiplication that are available in the optimized
BLAS libraries. Figure 1 shows that additional optimizations of the generated as-
sembly code and, in particular, selection of an appropriate ABI may be required
to attain high performance in the case of IBM Power 7.

Figure 2 presents the result of performance evaluation for the maximum
reliability path problem. We can conclude that the optimization attains more
than 66% of theoretical peak performance.
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Fig. 2. The maximum reliability path problem in the case of the Intel Sandy Bridge
platform

6 Related work

In this section, we describe the work related to automatic parallization of MMA
and how our algorithm contributes.

Automatic parallization can be performed by compilers (e.g., ICC [12], IBM
XL [13], GCC [10]) to translate a serial program into a multithreaded code.
Automatic parallelization attempts to justify the parallelization effort of loops,
performs the dataflow analysis (to determine whether each iteration of the loop
can be executed independently of the others), and use different technologies (e.g.,
OpenMP [26]) to take advantage of it. Such approach can suffer from the lack of
domain-specific knowledge about algorithms (e.g., the information about use of
the cache memory and SIMD registers [25]). Moreover, the extra overhead that
is associated with using multiple processors can negate speedup of parallelized
code.

To obtain highly optimized multithreaded implementations, autotuning can
be used. Automatically Tuned Linear Algebra Software (ATLAS) [29] introduces
autotuning to empirically determine optimal parameters of BLAS routines (e.g.,
blocking and unrolling factors). It can be difficult to apply it in the case of
production compilers since autotuning can consume a lot of time.
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7 Conclusion and future directions of work

This work presents a new compiler optimization that helps to obtain automati-
cally highly optimized multi-threaded instances of MMA without external code.
Our optimization is based on the automatic optimization of MMA implemented
in Polly along with approaches used in expert multi-threaded implementations.
This allows one to provide the domain-specific knowledge and reuse automatic
parallelization implemented in Polly.

In this paper, we compare the execution time of the code produced by the
optimization of MMA with the code produced using contemporary compilers
(GCC[10], ICC [12], IBM XL [13]), and Clang [11], the compiler front end, as
well as multi-threaded instances that are available in Intel’s MKL [14], BLIS [15],
and OpenBLAS [16]. In the case of GEMM, we attain more than 85% of vendor
optimized BLAS library performance. In the case of APPs, we can attain more
than 66% of theoretical peak performance.

We believe that higher performance can be achieved with better automatic
vectorization used by Polly to produce single-threaded MMA. Determination of
optimal values of the analytical model for a multithreaded implementation can
be another direction to improve the presented algorithm.
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