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Abstract. Strangely enough, the Semantic Web has fallen behind the
rest of the Web in terms of security. TLS is not in use currently for the
majority of URIs on the Semantic Web, and this leads to a number of
potential attacks on the network, web, and even semantic level. After
explaining the necessity and arguments over the TLS on the Semantic
Web, we point out security and privacy flaws in WebID+TLS and recent
other proposed Semantic Web standards at the W3C. We propose a new
kind of attacker, a semantic attacker, that attacks inference procedures.
Lastly, we propose alternatives, including the use of modern cryptogra-
phy that prevent attacks by virtue of using TLS, and how W3C standards
such as the W3C Web Cryptography API and IETF OAuth can solve
the use-cases needed by the Semantic Web.
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1 Introduction: Is the Semantic Web Insecure?

Currently, the Semantic Web claims to be the future of the Web, but unlike
alternative visions such as blockchain-based technology, the Semantic Web has no
privacy or security considerations. This is a rather embarassing state of affairs for
a Web standard that wants to connect the world’s data. Whether or not the poor
security and privacy of the Semantic Web can be rectified needs serious analysis
if the entire research endeavour is to be taken seriously, and considerable work
if the Semantic Web is to ever be deployed, particularly for use-cases involving
personal data.

The Semantic Web is based on linked data where items of interest are iden-
tified by URIs (Uniform Resource Identifiers) such as http://www.example.org.
Due to this design choice, to a large extent the Semantic Web crucially depends
on these identifiers being able to successfully retrieve documents in order to put
the “Web” into the Semantic Web. Strangely enough, the Semantic Web has
fallen behind the rest of the Web in terms of security.

As the core Semantic Web technologies were standardized by the W3C before
the widespread use of TLS and the Same Origin Policy was formalized, the
Semantic Web was designed without any security considerations. Yet today there



is almost no academic work on security in terms of the Semantic Web [23]. Rather
unfortunately, there also seems to be considerable confusion about security in
existing Semantic Web deployments like Solid,1 ranging from confusion over the
security problems in HTTP URIs to misuse of cryptography in WebID+TLS.2

This also problematically leads to the Semantic Web to become a privacy risk
for personal data, rather than being a force for privacy.

First, we review related literature on security, showing how this is the first
work to look at the security of the Semantic Web itself in Section 2. Then secu-
rity is defined in Section 3 via the classical definition of semantic security from
provable security, and we introduce the symbolic model for protocol analysis [13].
Then we outline the three different kinds of potential attacks on Semantic Web
architecture, following the lead of Barth et al.’s formalization of Web Security
in general, but with the addition of a new attacker, the semantic attacker [1]:

1. The Network attacker: On the network level, we show TLS is not in use
currently for the majority of URIs on the Semantic Web, leading to trivial
attacks on Linked Data in Section 4.

2. The Web attacker: On the level of Web applications, we show proposed
standards like WebID+TLS and the W3C Social Web standards have cryp-
tographic security flaws in Section 5.

3. The Semantic attacker: On the level of inference procedures, we show
how the preceding two levels can lead to attacks that can lead to corrupted
inferences in Section 6.

In general, the dependency of data retrieval and inferences based on insecure
Semantic Web data can lead to attacks on trusted semantics of the Semantic
Web itself. In Section 7, we demonstrate that this does not have to be the case:
A number of standards from the IETF and W3C can be used to upgrade the
Semantic Web to modern security-best practices, leading to a secure Semantic
Web.

2 Related Literature

There has been a large amount of previous research on the security of the Se-
mantic Web, yet none of it looks at the security properties of the Semantic Web
infrastructure itself. In general, there have been three streams of research on
security on the Semantic Web: Semantic Web policy languages for access con-
trol, Semantic Web ontologies for cybersecurity, and problems with privacy in
publishing Semantic Web data.

1 https://solid.mit.edu
2 It is well-known in the cryptographic research community that RSA signing keys

should not be used also for encryption in general without changes to the underlying
algorithms, as it introduces vulnerabilities [26].



2.1 Semantic Web-based Access Control

By far the largest amount of research has been done on access control languages
for the Semantic Web, such as Rei [20] and more recently the use of N3Logic [4]
with a sketch of a future W3C standard for Web Access Control (WAC).3 All of
these approaches descend from an attempt to model the permissions and obli-
gations between agents that would be operating on Semantic Web data using
speech acts [20], with the goal to maintain some security policy during a dis-
tributed activity such as Semantic Web Service composition. In practice these
approaches are mostly useful for interoperation between various access control
policies. Policy languages are typically used with mandatory access control (pos-
sibly extended to role-based and attribute-based access control), which relies on
a central trusted party such as an OS to actually enforce the access control [25],
and such a centralized trusted party is missing on the open Web except on the
level of individual web-sites. The primary innovation in using the Semantic Web
for policy languages is distributed access control. Rather than policy languages,
much of the rest of the Web depends on a capabilities-based approach as given
by OAuth [14]. This line of research on policy languages has been the source
of much innovation but is orthogonal to the security concerns of Semantic Web
data itself, upon which these policy languages depend for use in their inference.

2.2 Ontologies for cybersecurity

Another approach is to classify the kinds of attacks and security vulnerabilities
into a traditional OWL-based Semantic Web ontology [24]. Although such work
is interesting, and could be combined with provenance-based data integration
in order to help, for example, the U.S. Department of Homeland Security in
combining data about cyber-attacks, this approach does not actually discuss the
problems inherent in using such ontologies within an adversarial environment.

2.3 Privacy ramifications of Open Data

While publishing open data using Semantic Web standards may appear to be
a public good, even innocuous public data such as road data may serve to de-
anonymize users and so reveal personal or sensitive data, ranging from whether or
not a property is abandoned to enabling the discovery of sexual preference [10].
In order to prevent these problems, the publication and search of encrypted
RDF data has been proposed [21], as well as differential privacy [16], but so far
neither have been implemented. Although there has been increased advocacy by
Berners-Lee for the use of Semantic Web standards to “decentralize the Web”
and provide personal data [22], the very same use of the Semantic Web for data
integration can be used by third parties in order to build FBI Fusion Centers in
the USA [32].

3 https://www.w3.org/wiki/WebAccessControl



2.4 Semantic Web Security

Although previous research has noted on a very high-level “securing RDF is
much more challenging” than traditional XML and HTML-based infrastructure
as “we also need to ensure that security is preserved at the semantic level” [29],
so far there is no research in this direction that go beyond the mere “idea of
semantic web security standardization” [23] Instead, enterprise and government
users simply believe that it is best to “access control or security occurs at the
layer of the HTTP access and protocols, and not at the linked data layer.”4

3 Defining Semantic Security

What is security? Security is defined in terms of an attacker(or “threat model”).
Informally, if a message is encrypted, an attacker can not discover the original
message without a secret key that the attacker does not have. The original
message is called the “cleartext” (M) and the message encrypted by the secret
key is called the “ciphertext” (C). In terms of encryption and decryption, it is
E(M) → C and D(C) →M . To define this more precisely involves defining the
property of semantic security, as defined by Goldwasser and Micali: “Whatever is
efficiently computable about the cleartext given the ciphertext, is also efficiently
computable without the ciphertext” [13], i.e. P (f(M |C) = P (f(M)) for any
computable function f . To rephrase, an attacker can gain nothing in terms of
information if the ciphertext has been intercepted. Formally semantic security
is equivalent to indistinguishability under chosen plaintext attack (IND-CPA)
by a computationally bounded adversary for a given bound ε. However, in this
work for the sake of simplicity, definitions will given using the symbolic model,
where the attacker is not considered computationally bounded and cryptographic
primitives are considered functions over bitstrings in an abstract algebra [12].
This is a useful formalism as it can be easily automated by formal proof-proving
tools [8]. The attacker breaks the security of a ciphertext if the attacker (A)
knows the plaintext even if the message is encrypted, i.e. knows(A,M)∧E(M).

Separable from security and less rigorously defined is privacy. Privacy is
typically defined relative to an anonymity set, i.e. requiring the entity not being
identifiable within a set of entities (the anonymity set) by an adversary. Privacy
can be phrased in terms of unlinkability, namely that an entity can not be linked
to their actions (in this context “link” means a information-theoretic reduction of
the anonymity set, an entirely different notion than a hyperlink or link between
RDF documents). On the Web, users are entities whose primary action is visiting
a web-site, where a website is defined by an origin, where the origin is the
domain name without the scheme, i.e. origin.org without the http scheme. The
linking (i.e. “tracking”) of users between origins violates their privacy. On the
Web, the privacy and security boundary is given by the same origin policy :
Any code or data on the user’s browser is restricted by origin. So a cookie

4 http://structureddynamics.com/linked data.html



from http://origin.org should be accessible from https://origin.org and any sub-
pages such as http://origin.org/page.html, but should not be accessible from
http://origin2.org, and a user visiting the latter should not be connected by a
third party (such as the website themselves are a third-party advertising bureau).
The same goes for any state changes in the browser, including information in
localStorage in the browser.

4 The Lack of Network Layer Security (TLS) on the
Semantic Web

Transport Layer Security (TLS) is the well-known IETF standard for encrypt-
ing content transmitted over HTTP.5 In addition to encrypting data sent over
HTTP, the server that delivers the HTTP message can be authenticated with
a certificate (a public key attached to its domain name), so that the origin can
be proven to have sent the message.6 Users do not authenticate to servers using
TLS as specified by the IETF, but only the web site authenticates.

This means that resources hosted on URIs without TLS are vulnerable to
having their content intercepted, which is equivalent to the adversary visiting
the site rather than the user. Note the adversary can remove any additional
messages (such as HTTP headers or certificates that are in plaintext) and replay
the message without those messages. Worse, the content could be altered by an
attacker without the possibility of a user knowing that this is the case, giving
the user a fake resource.

Why not use TLS on the Semantic Web to preserve security and privacy?
When a URI is enabled with TLS, the URI uses HTTPS as its scheme in the URI
rather than HTTP. TLS was called informally “SSL” (Secure Sockets Layer), and
HTTP with TLS enabled adds a “S” for historical reasons to become HTTPS.
Unfortunately, the RDF specification states that HTTP and HTTPS URIs are
not the same: “Two IRIs are equal if and only if they are equivalent under
Simple String Comparison ... further normalization MUST NOT be performed
when comparing IRIs for equality” [11]. Using owl:sameAs (or to preserve the
correct semantics, owl:equivalentClass and owl:equivalentProperty when needed)
between HTTP and HTTPS URIs does not work as these are statements about
the things a URI denotes [15], not the text of the URI itself. RDF also does not
have a way to talk about a URI itself via a mechanism such as quoting.

One could claim a Semantic Web URI is only a name and so the usage of
TLS is not required. If there is no access to the content of the URI, URIs are the
same as any other arbitrary string in a knowledge representation language, and so
using HTTP or HTTPS has no effect on the formal semantics that determine the
inferences that result from a Semantic Web reasoning engine. There would hold

5 TLS 1.2 is available at https://tools.ietf.org/html/rfc5246, with TLS 1.3 being under
development at https://tlswg.github.io/tls13-spec/.

6 In reality, the server proves it has a key validated by a Certificate Authority that
the browser accepts. There is a long-standing issue that Certificate Authorities can
create certificates for domains they do not own.[2]



also be no problem if all Semantic Web resources were behind a perfectly secure
enterprise firewall. Yet if this was truly the case then there really is no “Web”
in the Semantic Web, and so the use of long HTTP URIs on the Semantic Web
is simply an odd naming convention. The opposing view has also been argued
by the Linked Data community that URIs should be linked to actual data that
can be retrieved by Semantic Web applications [7]. The entire point of Linked
Data is that a URI should have RDF statements available via HTTP about the
resource(s) denoted by the URI. Further, if a user agent such as a browser can
follow one URI to another via the links given by the RDF statements and so can
“follow your nose” to discover new RDF statements that form a more complete
knowledge representation of the resource.

4.1 Attacks

If TLS is not used on a origin, a network attacker may perform a number of
attacks. The goal of the network attacker is to gain access to the plaintext
of the resource retrieved from an origin. The first attack is trivial: If all data
is sent over using HTTP, then the attacker can intercept the HTTP traffic.
Also, an attacker can deliver whatever data they want to the unsuspecting user
without detection due to the origin not being authenticated. For example, if one
is retrieving open government data in Linked Data about the expenses given by
the French government for the upkeep of the Eiffel Tower and the revenue created
by tourists visiting the Eiffel Tower, and an attacker wanted to maliciously to
prove to the French government that the Eiffel Tower was a bad investment,
then the attacker could simply intercept the HTTP traffic hosted at the website
and so change the numbers in the government data. It would be impossible for
a user, such as a journalist, to tell if their HTTP traffic was tampered with by
an attacker. This is a very easy attack that can be done using open-source tools
such as wireshark7 and sslstrip.8

Opportunistic encryption that automatically upgrades HTTP to HTTPS can
be done by using the W3C Upgrade Insecure Requests specification where a
server requests that a HTTPS URI be used if possible via a HTTP Header
[33]. The server can then use a HSTS header to prevent any downgrade attacks
that stripped the ‘S’ off the HTTPS in a URI [17]. In this way, a browser or
Semantic Web application can ask for a Semantic Web HTTP URI and retrieve
content from a HTTPS URI. The W3C began to use this methodology on its site,
including RDF namespaces.9 However, although the W3C has put hope in the
eventual use of Upgrade Insecure Requests and HSTS, and to just “keep writing
‘http:’ and trust that the infrastructure will quietly switch over to TLS.”10 This
path makes insecure HTTP URIs the default mode, and does not offer any reason
for the Semantic Web to upgrade to TLS.

7 https://www.wireshark.org/
8 https://moxie.org/software/sslstrip/
9 https://www.w3.org/blog/2016/05/https-and-the-semantic-weblinked-data/

10 https://www.w3.org/blog/2016/05/https-and-the-semantic-weblinked-
data/#comment-93683



However, the attack is that the Upgrade Insecure Requests headers are de-
livered over HTTP, any attacker actively watching the unencrypted HTTP redi-
rection can simply strip those headers to prevent upgrade to HTTPS and allow
the HTTP content to be attacked by sending the same request, but stripped of
the header. This allows the attacker to impersonate the user and intercept the
unencrypted resource. So to just keep using HTTP URIs and hope for the best
does not solve the problem.

4.2 Defenses

So why should Linked Data use HTTPS rather than HTTP URIs? URIs are also
exposed to HTML links, and thus Tim Berners-Lee is rightfully worried that a
switch to HTTP violates his principle that “Cool URIs Don’t Change”11 and
so the adoption of HTTPS would break existing links. Berners-Lee goes even
further:“Put simply, the HTTPS Everywhere campaign taken at face value com-
pletely breaks the web. In a way it is arguably a greater threat to the integrity
for the web than anything else in its history”[3]. Indeed, network-level informa-
tion about encryption (i.e. the use of HTTPS) should not have been exposed
to the application level. One can still declare by fiat that all HTTPS URIs are
equivalent to HTTP URIs on the Semantic Web: “If two URIs differ only in
the ‘s’ of ‘https:’, then they may never be used for different things.”12 How-
ever, this proposal has not been accepted and Upgrade Insecure Requests still
requires an unencrypted HTTP response. The recommended solution should be
to use HTTPS on all origins that host Linked Data. This is a serious problem
for the Semantic Web community as the use of TLS-enabled HTTP URIs on the
Semantic Web is minuscule, being less than .1% of Semantic Web URIs.13 In
comparsion in January 2017, the rest of the Web has 50% usage of TLS.14

5 Application-level Attacks on the Semantic Web

Unfortunately, even if TLS is used correctly on the network level, there may be
attacks on the level of the Web application by a Web attacker [1]. The goal of a
Web attacker is to violate the privacy of a user as defined in Section 3. In terms
of models, this means that not only can a user and an attacker visit websites
to retrieve resources and gain knowledge of them, but now origins are actors
that work on behalf of users and may thus interact with other origins (i.e. “visit
sites”) and have knowledge as well. This new paradigm can lead a Web attacker
to have new attacks, in particular to impersonate a user to a given origin. As
Semantic Web application-level standards do not use modern cryptography and
violate the same origin policy, Web attackers can be successful. First, we’ll look

11 https://www.w3.org/Provider/Style/URI.html
12 https://lists.w3.org/Archives/Public/semantic-web/2014Aug/0078.html
13 According to http://lodlaundromat.org/, the largest search index of publicly available

RDF URIs in 2017 (Retrieved on May 15th 2017).
14 https://www.wired.com/2017/01/half-web-now-encrypted-makes-everyone-safer/



in detail at WebID+TLS in detail and then give an overview of security issues
in a wider emerging stack of standards for distributed social networking from
the W3C based on the Semantic Web.

5.1 WebID+TLS considered Harmful

Background There has been some awareness of TLS in the Semantic Web com-
munity due to the WebID+TLS effort to use URIs as identifiers for people, with
the evocative goal of creating decentralized social networking applications [27].
The goal of WebID is that each person can have their own personal URI that
maintains their identity on the Web and from which their personal data, given
by RDF statements, can be retrieved. Variations on WebID+TLS have tried
adding access control in order make sure that personal data can only be given to
explicitly authorized agents rather than given to absolutely anyone who issues a
HTTP request [30]. In WebID+TLS, a user generates a client certificate using
asymmetric cryptography (which contains a signature given by a private key
stored in TLS keystore, as well as a link to their WebID URL) that is stored by
the browser.15 The public key can then be posted to the URI of their WebID
URI. When a user wishes to authenticate themselves and authorize the transfer
of their own personal RDF data from a site (called the identity provider on a
distinct origin, following the terminology used in OAuth [14]) to a third-party
(a relying party), a Semantic Web application can ask the user to authenticate
a TLS session using their client certificate to identify their browser, and since
the client certificate stored by the browser is signed with the private key that
corresponds to the public key on their WebID URI (i.e. the signature on the
certificate can be verified using that public key), they can prove that the WebID
URI is controlled by the same agent that controls the browser. Normal TLS
requires only the server authenticate, but client certificates also allow a client to
authenticate, creating a mutually authenticated TLS session (not done in nor-
mal TLS). The Diagram 1 illustrates the protocol flow, with the flow of sensitive
personal data given in green:

1. User presents a self-signed client certificate to the relying party.
2. Relying party extracts URI of identity provider from client certificate and

retrieves public key from identity provider.
3. If public key matches key in client certificate, authenticate user using a

challenge-response.
4. Relying party retrieves personal RDF data from he identity provider.

Attacks Despite using TLS, the problem with WebID+TLS is that it violates
the security and privacy boundaries of the Web. In WebID+TLS, the client
certificate is currently created with the <keygen> tag and stored in the TLS
keystore. However, due to its age (it predates the same origin policy) and the lack
of privacy concerns when it was designed, a keygen-generated client certificate

15 https://www.w3.org/2005/Incubator/webid/spec/tls/



Fig. 1. WebID Protocol Flow

can be accessible from any origin, and so serve as a “super-cookie” to track users
across origins.

If an attacker wants to track a user, the attacker can query and ask for a
client certificate. A malicious attacker from one origin who wanted to re-identify
a user on another origin could simply install a client certificate on the malicious
origin and ask for the certificate again on another origin. Worse, the current user-
experience around both generating and selecting client certificates is confusing,
and neither the installation nor usage of client certificates by HTML is stan-
dardized, so the usage of client certificates in HTML depends on ad-hoc browser
behavior dependent on a particular idiosyncratic per-browser interpretation of
a MIME-type. 16

WebID+TLS is also based on out-of-date browser cryptography that is being
deprecated by the browsers themselves. Even if the user does end up successfully
identifying themselves with a client certificate, current browsers use the insecure
MD5 hash function in the signed client certificate. MD5 has proven to not be
collision resistant, which means that an attacker can generate a fake client cer-
tificate whose signature can be verified using the public key of a user even though
the attacker does not have private key of the user [31]. In this way, a user can
be impersonated by an attacker.

Defenses Due to these security and privacy issues, browser vendors are cur-
rently deprecating keygen from HTML and client certificates handling from the
application layer, which will mean WebID+TLS will stop working. Although
the Semantic Web community has yet to engage with it, modern cryptographic

16 https://groups.google.com/a/chromium.org/forum/#!msg/blink-
dev/pX5NbX0Xack/kmHsyMGJZAMJ



primitives are now provided by the W3C Web Cryptography API.17 Getting
rid of passwords can be done via authentication by hardware tokens (or other
authenticators) by the W3C Web Authentication API, which is designed both
to not violate the same-origin policy (i.e. keys differ per origin) and use modern
cryptographic primitives such as ECDSA [5]. Much like the rest of the Web,
the Semantic Web can use explicit authorization of personal data transfer using
IETF standards like OAuth [14]. By separating identities by origin and using
modern cryptography, both the privacy and the security of users can be protected
while enabling decentralized Semantic Web applications.

Part of the problem is a confusion over the layers of the Web: TLS is a
network-level protocol, not an application level protocol. For example, inter-
rupting a network-level TLS handshake in order to start a user-centric identity
and authentication protocol in WebID+TLS is bad design insofar as it mixes the
application-level concept of an “a person’s identity” with the network level that
just ships bits around. To some extent, the problems with the use of TLS on th e
Semantic Web is that network level information (whether a HTTP connection is
encrypted using TLS or not) is exposed on the level of a URI used in a Semantic
Web applications, including but not limited to WebID+TLS. Web applications
should use TLS to access origins but not use messages in the TLS flow such as
certificates outside the network layer.

Instead, messages should be sent on the application level, as done in modern
authorization protocols such as OAuth [14]. There has been some claims We-
bID+TLS is more private than OAuth. Although this is not true, as the identity
provider is aware of all relying party transactions in both protocols, if user pri-
vacy against a malicious relying party is needed, then blind signatures can be
used in OAuth to create unlinkability between a user’s the identity provider and
the relying party while still sending personal data [18].

5.2 Privacy and Security Flaws in W3C Social Web standards

Although a complete analysis of these standards would require more space, the
precedent set by WebID+TLS is troubling insofar as other W3C Semantic Web
standards and proposed standards do not take into account adversaries or mod-
ern cryptography as well. To continue our analysis of Solid, Solid allows a user
after authentication via WebID+TLS to read and write data using HTTP GET
and POST verbs with additional. However, again if a local POST is done to a
HTTP origin rather than a HTTPS origin, all the attacks in Section 4 apply as
the request and any Link headers will be unencrypted. Solid uses W3C Linked
Data Notifications18 to share RDF data using either the Linked Data Platform
or a publish-subscribe model following the W3C WebSub Recommendation.19

While Linked Data Notifications requires signing data and a whitelist, but
does not specify how either can be done. In terms of signatures, proposed stan-

17 https://www.w3.org/TR/WebCryptoAPI/
18 https://www.w3.org/TR/ldn/
19 https://www.w3.org/TR/websub/



dards such as Linked Data Signatures 20 repeat the mistakes of XML Digital
Signatures: There is a complex canonicalization algorithm that does not specify
how to resolve problems noted by earlier research [9] in chosing how to serialize
a RDF graph in order (i.e. the “Expansion Algorithm” is undocumented in RDF
Dataset normalization as used by Linked Data Signatures21 and in the payload
has a signature that can be simply detached by an attacker and replaced by the
attacker’s signature (a “signature stripping” attack) [19]. Linked Data Signatures
ignores the foundations of digital signatures, namely that digital signatures re-
quire concrete byte-strings, and so do not work over abstract graphs without
canonicalization. So it is unclear why Linked Data Signatures could simply con-
vert the RDF to a binary string (via a “base64” transformation), the payload as
is recommended by the IETF JOSE Working Group.22

WebSub claims to support digital signatures for authentication to prevent
Sybil attacks (an attack where, due to lack of mutual authentication in publish-
subscribe, server is overwhelmed by client requests or a server overwhelms a
client with requests), but does not use asymmetric digital signatures, instead
relying on a shared secret to create a HMAC (i.e. symmetric cryptography). Yet
the shared secret is simply sent along optionally with the first message, and given
a server must accept re-requests (possibly with new shared secrets), unless TLS
connections are used on both the client and server in WebSub, the shared secret
may be intercepted or re-set at any time. WebSub has only the callback URL
of the subscriber require HTTPS, and the initial shared secret is sent back not
with the callback URL but by the first subscription request. Lastly, the broken
SHA-1 hash function is supported for calculation of the HMAC. These problems
of authentication in scalable pub-sub systems are known to the research commu-
nity, and solutions have been proposed relying on identity-based cryptography
that are not used in WebSub [28]. Thus, it can be shown that the problems
of authentication and the failure to use well-known cryptographic techniques
continues to be a problem in further proposed Semantic Web standards.

6 Semantic Attackers

6.1 Background

While earlier attacks are generic results of either the lack of network-level en-
cryption in TLS or bad protocol design, the Semantic Web enables a new class
of attacker specific to RDF. In detail, this Semantic attacker has the goal of
altering inference procedures. This kind of if the Semantic attacker builds on
attacks on the network, and possibly the Web level, to compromise the RDF
triples that an inference procedure depends on and so maliciously alter them,
therefore changing results of the inference procedure. An attack is semantic in-
sofar as it depends on the semantics of an inference procedure, although it may

20 https://w3c-dvcg.github.io/ld-signatures/
21 https://json-ld.github.io/normalization/spec/
22 https://tools.ietf.org/html/rfc7515



but does not have to alter the semantics of the inference procedure itself.23 Due
to the distributed nature of resources on the Semantic Web.only gets worse if the
Semantic Web application uses the “follow your nose” algorithm used in some
Linked Data applications.

6.2 Attack

At any point data was retrieved from RDF statements given by a HTTP URI
that does not use TLS, then the attacker can simply change the data and so
influence the Semantic Web inference engine. An inference procedure I is given
as depending on a set of x triples R = R1 ∧ R2 ∧ ...Rx such that new triples S
are produced by the inference procedure (I(R) → S). If an attacker knows the
plaintext, they can alter it arbitrarily, such that plaintext R1 → Ra. Therefore,
one or more malicious triples can be inserted R2 = R1 ∧ Ra ∧ ...Rx and the
inference procedure will produce a result that is at least partially under the
control of the attacker, I(R2) → S2 where S1 6= S2.

For example, if a Linked Data-aware application was trying to determine if
a person belonged to a particular class, such as the class of all terrorists. If a
malicious semantic attacker noticed that one of the resources that the inference
procedure depended on did not use TLS, as would be the case if the definition of
a terrorist was hosted in a RDF Schema given by non-TLS website (such as the
majority of non-W3C Semantic Web vocabularies). In this case, the semantic
attacker would intercept and alter the definition of terrorist in the OWL file by
removing a triple that stated that the crime must be classified as political by
virtue of a certain list of government-approved definitions. In this way, a person
who did a simple robbery could be classified as a terrorist by Semantic Web
inference engine operating off of insecure resources in a FBI Fusion Center. If
further triples were removed, all sorts of people could be mistakenly classified as
a terrorists by a correctly operating inference engine using poor data.

6.3 Defenses

Given that Semantic Web reasoning in Linked Data depends on having trusted
information, the entire process of reasoning and information retrieval must use
TLS for every URI if the Semantic Web application is to be trusted. The only
exception to this is that if the URI is not accessed, but merely used as an
identifier. However, in this case the only trusted Semantic Web inference process
is one that does not depend on the HTTP infrastructure. If any triples are
derived from Web-level protocols, these protocols should also maintain their
security properties and use TLS properly to prevent attacks.

23 Note that this is out of scope, as an adversary could simply add a triple to make
a previously-valid OWL inference invalid, and so leaving only an RDF(S) inference
possible.



7 Conclusion

Network and semantic attacks on the Semantic Web could be fixed if TLS was
used on the Semantic Web. The only problem is outdated Semantic Web spec-
ifications. Shouldn’t W3C Recommendations, rather than being considered as
religious texts, be fixed to keep up with modern security? Although the RDF
specification lack a way to discuss URIs themselves [11], it would make sense
that best practices allow HTTP and HTTPS URIs to be equivalent. While this
could be added to future editions of the specification, there is no reason to wait.
If one believes that the use of URIs on the Semantic Web is still a marginal phe-
nomena, the argument that this “breaks” existing Semantic Web software seems
to assume that the Semantic Web is a mature technology with widespread adop-
tion. The Semantic Web still is in its early stages, and so doing security right
should take precedence over preserving broken software.

The future of HTTPS is also bright: TLS has improved and became easier
to deploy as well, with certificates available for free and the protocol itself faster
and more secure. For example, TLS version 1.3 24 corrects a number of problems
in TLS 1.2 such as an unclear state machine and attacks on TLS authentica-
tion [6]. These problems and more are fixed in TLS 1.3, and there is now provably
secure implementations of TLS 1.3 that rely on fast elliptic curve cryptography.
Earlier, the price of server-side certificates was considered too high and there
was concerns over the hierarchical nature of the Certificate Authority system,
as a Certificate Authority can issue a certificate that has global scope. These
problems led to either Semantic Web researchers completely ignoring TLS due
to supposed “security concerns” and for those Semantic technologies using TLS
to such as WebID+TLS to want to use “self-signed” certificates instead of those
from a certificate authority. Thanks to the effort by “Let’s Encrypt,” the price of
server certificates is now free, so there is no reason not to use the high-security
TLS certificates from “Let’s Encrypt” other than the time investment to con-
figure a Web server to use TLS.25 Also, if one uses certificates and is worried
about a rogue Certificate Authority issuing certificates incorrectly or being com-
promised by a malicious actor, the IETF Certificate Transparency standards,
employed by Google, provides efficient auditing and search of certificates using
a Merkle tree.26

Simply using the modern standards used by the rest of the Web such as
OAuth [14] would defeat most Web attackers, allowing it to be taken more se-
riously as a real deployment platform for sensitive personal data.Given that
the design of cryptographic protocols is difficult for even experts, it should be
no surprise that the creation of new protocols in W3C Semantic Web Work-
ing Groups that may not this expertise can lead to problems. Rather than use
WebID+TLS, Semantic Web applications should respect the same-origin policy
and use modern methods of authentication, such as the Web Authentication

24 https://github.com/tlswg/tls13-spec
25 https://letsencrypt.org/
26 https://www.certificate-transparency.org/



API, and authorization, such as OAuth, that respect the same origin policy. If
cryptographic primitives are to be used on new protocols on the Semantic Web,
they should use the primitives provided by modern APIs as provided by the
W3C Web Cryptography API and not broken cryptographic primitives whose
interaction with the browser are not normatively specified.

Given that TLS certificates are free and that the Semantic Web has still not
reached widespread usage enough to argue that moving from HTTP to HTTPS
would break real-world applications, Semantic Web tools and Semantic Web
vocabularies should switch as soon as possible to using TLS-encrypted HTTPS
URIs. There is no excuse not to use encryption if you want users to trust the
Semantic Web. Luckily, most of the attacks described here as potential attacks
as the underlying W3C standards used in the Semantic Web still have not been
widely deployed and remain mostly in the realm of academia, and thus there
are limited real-world incentives to attack Semantic Web-based infrastructure.
Regardless, both open data and personal data require security, and personal data
in addition also requires privacy. The building block for both security and privacy
is proper usage of (at least) TLS and more complex cryptographic protocols on
the level of applications. Otherwise, the use of the Semantic Web will likely be
replaced by technology, such as blockchains, that takes security on board in its
design.
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