
Providing of FPGA Resources as a Service:

Technologies, Deployment and Case-Study

Inna Kolesnyk
1
, Artem Perepelitsyn

2
, Vitaliy Kulanov

3

National Aerospace University “KhAI”, Chkalov str. 17, 61070 Kharkov, Ukraine.
1
 i.kolesnyk@csn.khai.edu

2
 a.perepelitsyn@csn.khai.edu

3
 v.kulanov@csn.khai.edu

Abstract. In this study we analyzed some aspects of applying the Field Pro-

grammable Gate Array (FPGA) technology based on Peripheral Component In-

terconnect Express (PCIe) bus to create a cloud service. Task classification for a

FPGA as a Service (FaaS) was proposed. We considered various approaches to

FaaS deploying and feasible ways of communication between the cloud infra-

structure and the FPGA platform. We elaborated and approved cost-effective

FaaS architecture, which is based on a set of FPGA boards. The input-oriented

task based on brute force search of polynomials for nonlinear feedback shift

registers of the second degree was implemented. The approach of creating

multiparametrized tasks for a wide range of FPGA resources was proved to be

effective.

Keywords: Cloud Service, FPGA, FPGA as a Service, FaaS Platform, FaaS

Tasks, FaaS Deployment, Brute Force Search, NLFSR

Key Terms: Computation, ConcurrentComputation, ServiceComposition, Data,

HighPerformanceComputing

1 Introduction

The growing demand for the services provided by cloud technologies is due to

their advantages over traditional computing. Accessibility anywhere, relatively low

requirements for computing power of the client machine, and as a result, lower power

consumption for end user, saved hardware and time resources - all greatly accelerate

this trend.

Applying the FPGA technology in a cloud computing is of great interest nowadays

[1-3]. It can significantly speed up many performance-intensive tasks (or services):

from digital signal processing (digital video processing, audio signal processing, spec-

tral estimation, speech recognition, imaging processing, biomedicine, radar, sonar,

etc.) to specific mathematical calculations for science. It also allows to propose more

energy-efficient solutions for data centers [4, 5], especially in cases where some part

of a cloud infrastructure can be deployed on FPGA platform.

63

mailto:a.perepelitsyn@csn.khai.edu

In an article on FPGA application analysis [6] it is shown that FPGA can interact

with a cloud infrastructure on three different levels. They are the following:

1. FPGA as a Service (FaaS) - providing end users with "raw" FPGA resources and

giving them ability to define their own projects.

2. FPGA for a Service (FfaS) - providing end users with already defined services (e.g.

audio/video processing, specific DSP algorithms etc.). In this case customer may

not even know about the hardware configuration/characteristics.

3. FPGA for Cloud Infrastructure - the case when FPGA is used to support cloud in-

frastructure itself (networking, virtualization platform etc.).

Among the variety of existing levels, FaaS still requires more attention and re-

search as there are many methods, tools and techniques that can be applied. The scope

of this paper is to analyze existing FaaS solutions, propose FaaS deployment tech-

niques and carry out a research work in the deployed computational cluster.

2 FPGA as a Service: PCIe-based Approach

For high-performance computing there must be a highly effective interaction be-

tween the CPU (physical hardware) and the accelerators on the FPGA. Among the

various methods of connecting, the PCIe bus is suitable for loosely coupled accelera-

tors because of its high capacity. A high-performance library used for communication

of the PCIe FPGA with the rest of the system is the key to the enhanced use of FPGA-

accelerators. However, due to the fact that such a universal library does not exist,

FPGA developers have to write a significant amount of code on the side of FPGA for

FPGA. They must also develop a custom code (e.g. drivers, APIs) to use the FPGA

accelerators. All of this only complicates the developers’ work. Today it is a major

problem for the mass usage of FPGA based PCIe accelerators.

We analyzed the existing solutions targeted at incresing the efficiency and flexibil-

ity of using FPGAs with integrated PCIe.

PCIe is a multi-layered protocol that includes a physical layer, a data link layer and

a transaction layer. Data is formed into packets and transmitted on the transaction

level. In order to interact with the FPGA through the PCIe, developers can use only a

limited set of common functions reserved for the data transmission. Those who are

interested in working with the low-level functions can use IP-cores for the PCIe, pro-

vided directly by the vendors. However, it is often necessary to use third-party solu-

tions, which simplify the communication process with the FPGA via the PCIe and

accelerate the development. Existing solutions consist of hardware (IP-core) and

software (drivers, GUI) parts and a set of libraries/APIs.

On the hardware side, developers gain access to the PCIe interface via IP-core. It

does not require knowledge of addresses, buffer sizes or PCIe packet format. The data

is received and sent by invoking special functions, which act in FIFO-like manner.

The software includes drivers and the utilities for configuring. The driver can sup-

port simultaneous work of the multiple FPGAs. The software can include a set of

libraries in such languages as C/C++, Python, Java and others to write third-party

programs.

64

Some features of existing PCIe-based FPGA projects are shown in table 1. A large

number of projects have open source code and support different operating systems.

Table 1. The Features of the FPGA based on PCIe bus

Name
FPGA

Vendor

PCIe

interaction

method

OS

Compati-

bility

API Open Source

Riffa [7] Altera,

Xilinx

DMA Windows,

Linux

C, C++, Py-

thon, Matlab,

Java

Verilog, VHDL,

C, C++, Java,

Python, Matlab

MPRACE [8] Xilinx DMA Linux -

XAPP 1052 [9] Xilinx DMA Windows,

Linux

- Verilog, VHDL,

C

XAPP 859 [10] Xilinx DMA Windows - Verilog

PLDA EZDMA2

[11]

Altera,

Xilinx

DMA Windows,

Linux

C++ -

PLDA

XpressRICH3 [12]

Altera DMA Windows,

Linux

C++ Verilog, C,

C++, Java

3 FaaS Task Classification

One of the main advantages of the FPGA technology application is the ability to

implement non-standard hardware based solutions, especially when microprocessors

show low efficiency/resource capability, and production of ASIC is still unreasonable

due to the price per product unit. Also, there are special types of computational tasks,

which show better performance and energy-efficiency for FPGA compared with

CPU-based solutions and the increase is immense for GPU-based solutions [13].

Exactly for such type of tasks FPGA resources may be provided as a service. Typi-

cally that is data processing for science, imaging, cryptography, medicine and indus-

try. The data flow of such tasks is shown in Fig. 1.

ComputationsInput Data Output Data

Control Status

Fig. 1. Data Flow in typical tasks for FPGA as a Service

According to symmetry of data path throughputs the FaaS tasks is classified into:

 Symmetric Tasks - symmetrical throughputs (for symmetric algorithms);

 Input-oriented Tasks (IOT) - dominance of input dataflow (computationally inten-

sive tasks such as filtering, inverse problem solving, convenient number search, or

brute force search);

 Output-oriented Tasks (OOT) - dominance of output dataflow (all types of data

generators).

65

Symmetrical or output oriented throughput tasks require a communication channel

with a high bandwidth. In this case, the PCI Express or Gigabit Ethernet interfaces are

strongly recommended. A large amount of tasks with non-intensive data-exchange

operations may be implemented in FPGA even without fast communication channels,

simply via USB, UART and other widely used interfaces.

4 FaaS Deployment Approach

In spite of all the advantages of the FPGA PCIe-based platforms, they are still too

expensive, and when dealing with input-oriented tasks more cost-effective solutions

can be applied.

The proposed coarse-grained FaaS infrastructure consists of several components

(see Fig. 2):

 FPGA Development Kit Boards, connected to a server via the USB interface;

 A server machine with running JTAG Server, FaaS Tasks WEB Server and Server-

side application for distributing and collecting data;

 User PC with CAD Tool and a WEB browser.

User’s WEB

Browser

User’s CAD

Tool Instance

FaaS Tasks

WEB Server

JTAG Server

Authorization

information and

Binary/HEX Data

Files

J
T

A
G

S
e

rv
e

r

c
re

d
e

n
ti
a

ls

SRAM

Object Files

(SOF)

Data

Distributor

and Collector

Binary/HEX

Data Files

FPGA Board

C
o

m
m

a
n

d
s

a
n
d

 D
a
ta

 S
e
ts

S
ta

tu
s
 a

n
d

P
ro

d
u

c
e
d

 D
a
ta

SOFs

Task Status/

Results Data
Task Status/

Results Data

Server-side
User PC

Network

Layer

Fig. 2. Coarse-grained FaaS infrastructure

The efficiency of task implementation in FaaS depends on its parallelization fea-

ture. If the data dependency can be reduced and the algorithm allows the paralleliza-

tion, it’s possible to organize the scaling of the FPGA system in a wide range of

available resources. The implementation of tasks using multiparametrization allows

creating a universal project, which can be used in a wide range of FPGA chips with-

out redesigning.

66

5 Case-Study: Brute Force Search

To verify the proposed approach, FaaS was deployed. A set of Altera DE2 boards

was connected to the host computer (server) via USB interface. In order to give the

remote access and ability to program FPGA boards, the JTAG server was configured.

The described service was used for solving a scientific problem dealing with the

brute force search of polynomials for nonlinear feedback shift registers [14]. This task

is input-oriented, which means that it has the dominance of pre-generated on the user

side input data. The data set consists of millions of coefficients for non-linear poly-

nomials. The coefficients of each polynomial can be processed separately. Therefore,

this task is completely suitable for parallelization by means of multiparametrization.

Only a small part of these coefficients can generate maximum length sequence.

To achieve the best performance, the implementation of search block was separat-

ed from the other parts of the project using dual port RAMs. The dataflow in one

channel (FPGA) is shown in Fig. 3.

Input Buffer Output Buffer

Search

Module

(NLFSR)

Input Buffer Output Buffer

Search

Module

(NLFSR)

Input Buffer Output Buffer

Search

Module

(NLFSR)

On-chip Data

Distributor

On-chip Data

Collector

Fig. 3. Scalable implementation of brute force search task for FaaS

Full amount of input data was divided between four FPGA boards programmed

with the same project (the same SOF). The distribution and collection of data was

carried by a custom communication software.

This example of FaaS shows that such type of tasks can be parallelized not only in-

side of an integrated circuit (chip) but also between independent boards. If

multiparametrization was used during development of task implementation, the pro-

ject may be ported to another chip family without redesigning. FaaS in this case can

include various types of boards.

6 Conclusion

Over the past years the FPGA technology has taken a big leap towards conquesting

the cloud service market. The common trend is that the growth in this area is still in

progress due to the advantages that programmable logic can offer.

In this article FPGA as a Service was considered. The analysis of existing tech-

niques showed that one should take into account a great variety of different approach-

es of deploying FaaS. In most cases the choice depends on many factors, from the

67

final cost of FaaS infrastructure to type of task that is going to be executed. It is also

showed that according to the symmetry of data path throughputs the FaaS tasks can be

classified to symmetric, input-oriented, and output-oriented tasks.

A cost-effective solution for FPGA as a Service was proposed. This architecture

can be recommended for so called input-oriented tasks, where the requirements for

the input and output dataflow are not so strict. To verify the proposed approach, a

high performance computational task was carried out, used for solving scientific prob-

lem based on brute force search of polynomials for nonlinear feedback shift registers

of second degree. It allowed saving the time and resources to get final results.

References

1. Chen, F., Shan, Y., Zhang, Y., Wang, Y.: Enabling FPGAs in the Cloud. In: Proceedings

of the 11th ACM Conference on Computing Frontiers Article No. 3, pp. 1–10. Cagliari, Italy

(2014). doi: 10.1145/2597917.2597929

2. Gupta, P.: Xeon+FPGA platform for the data center, https://www.ece.cmu.edu/

3. Fahmy, S. A., Vipin, K., Shreejith, S.: Virtualized FPGA accelerators for efficient cloud

computing. In: IEEE International Conference on Cloud Computing Technology and Sci-

ence, pp. 430–435. Vancouver, Canada (2015). doi: 10.1109/CloudCom.2015.60

4. Yanovskaya, O., Yanovsky, M., Kharchenko, V.: The concept of green Cloud infrastruc-

ture based on distributed computing and hardware accelerator within FPGA as a Service. In:

Proceedings of the IEEE East-West Design & Test Symposium (EWDTS), pp. 45–48. Kiev,

Ukraine (2014). doi: 10.1109/EWDTS.2014.7027089

5. Neshatpour, K., Malik, M., Ghodrat, M. A., Sasan, A., Homayoun, H.: Energy-efficient

acceleration of Big Data analytics applications using FPGAs. In: BIG DATA '15 Proceed-

ings of the 2015 IEEE International Conference on Big Data (Big Data), pp. 115–123.

Washington, DC, USA (2015). doi: 10.1109/BigData.2015.7363748

6. Kolesnyk, I. N., Kulanov, V. O., Perepelitsyn, A. E.: Analysis of FPGA Technologies Ap-

plication as a Part of Cloud Infrastructure. In: Radioelectronic and computer systems, 6 (80),

pp. 130–135 (2016).

7. A Reusable Integration Framework For FPGA Accelerators, http://riffa.ucsd.edu

8. Marcus, G., Gao, W., Kugel, A., Manner, R.: The MPRACE framework: An open source

stack for communication with custom FPGA-based accelerators. In: Programmable Logic,

VII Southern Conference, Cordoba, Argentina (2011). doi: 10.1109/SPL.2011.5782641

9. Bus Master Performance Demonstration Reference Design for the Xilinx Endpoint PCI

Express Solutions, https://www.xilinx.com

10. Lund, K., Naylor, D., Trynosky, S.: Virtex-5 FPGA Integrated Endpoint Block for PCI

Express Designs, https://www.xilinx.com

11. EZDMA2 IP for Altera Devices, http://www.plda.com

12. XpressRICH3-AXI for ASIC, https://www.plda.com/

13. Fowers, J., Brown, G., Cooke, P., Stitt, G.: A performance and energy comparison of

FPGAs, GPUs, and multicores for sliding-window applications. In: FPGA '12 Proceedings

of the ACM/SIGDA international symposium on Field Programmable Gate Arrays, pp. 47–

56. Monterey, California, USA (2012). doi: 10.1145/2145694.2145704

14. Poluyanenko, N.: Development of the search method for non-linear shift registers using

hardware, implemented on field programmable gate arrays. In: EUREKA: Physics and En-

gineering, pp. 53-60 (2017). doi: 10.21303/2461-4262.2017.00271

68

