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Abstract—This paper presents Crank-Nicolson scheme for
space fractional heat conduction equation, formulated with
Riemann-Liouville fractional derivative. Dirichlet and Robin
boundary condition will be considered. To illustrate the accu-
racy of described method some computational examples will be
presented as well.

I. INTRODUCTION

In recent years the applications of mathematical models
using the fractional order derivatives are very popular in
technical science. Different types of phenomena in physics,
biology, viscoelasticity, heat transfer, electrical engineering,
control theory, fluid and continuum mechanics can be modeled
by using the fractional order derivatives [6], [23], [10],
[19], [33]. For example in paper [20] mathematical models of
supercapacitors are considered. Authors investigated models
based on electrical circuits in the form of RC ladder networks.
These models are described using fractional order differential
equations. Often we are not able to solve these models in
an analytical way, so it is important to develop approximate
methods of solving differential equations of fractional order.

Murio in paper [21] presents the implicit finite differ-
ence approximation for the time fractional diffusion equations
with homogeneous Dirichlet boundary conditions, formulated
by Caputo derivative. In paper [1], implicit finite difference
method was used to solve time fractional heat conduction equa-
tion with Neumann and Robin boundary conditions. In these
case also, the Caputo derivative was used. In paper [30] authors
describes approximated solution of the fractional equation with
Dirichlet and Neumann boundary conditions.

Paper [7] describes numerical method for diffusion equa-
tion with Dirichlet boundary conditions. To discretization
fractional derivative authors used finite difference method
and Kansa method. Paper [11] presents numerical solution
of model describe by fractional differential equation with
space fractional derivative and Dirichlet boundary conditions.
Fractional derivative used in this model was Riemann-Liouville
derivative. Authors used finite volume method.

Also Meerschaert and Tadjeran dealt with fractional dif-
ferential equations [13], [12], [14], [35]. Paper [35] describes
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numerical solution of space fractional diffusion equation with
boundary condition of the first kind, and in paper [12] au-
thors presents finite difference method for two-dimensional
fractional dispersion equation. In both papers, as the fractional
derivative, the Riemann-Liouville derivative was used.

In this paper we present numerical solution of space frac-
tional heat conduction equation. To the equation the Dirichlet
and Robin boundary condition was added. In order to solve the
equation, the Crank-Nicolson scheme was used. To illustrate
the accuracy of described method some computational exam-
ples will be presented as well. The aim to achieve numerical
solution of considered model is application it to solve inverse
problems. Numerical solution of described model is called
solution of direct problem. In the process of solving inverse
problem, it is required to solve the direct problem many times.
More about inverse problems of fractional order can be found
in papers [2], [3], [4], [5]. In these papers, swarm optimization
algorithms are introduced. More about intelligent algorithms
and its application can be found in [24], [25], [26], [27], [28].

II. FORMULATION OF THE PROBLEM

We discuss the following space fractional heat conduction
equation

c %
∂u(x, t)

∂t
= λ(x)

∂αu(x, t)

∂xα
+ g(x, t), (1)

defined in area D = {(x, t) : x ∈ [a, b], t ∈ [0, T )}, where
λ(x) is thermal conductivity coefficient, c and % denote the
specific heat and density. We assume that λ(x) > 0 and α ∈
(1, 2]. The initial condition is also posed

u(x, 0) = f(x), x ∈ [a, b], (2)

as well as the homogeneous Dirichlet and Robin boundary
conditions

u(a, t) = q(t), t ∈ [0, T ), (3)

−λ(x)
∂u(b, t)

∂x
= h(t)(u(b, t)− u∞), t ∈ [0, T ), (4)

where h describes the heat transfer coefficient and u∞ is the
ambient temperature.
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Fractional derivative with respect to space, which occurs in
equation (1), will be the Riemann-Liouville fractional deriva-
tive [23], [8] determined as follows

∂αu(x, t)

∂tα
=

1

Γ(n− α)

∂n

∂xn

x∫
a

u(s, t)(x− s)n−1−α ds, (5)

where α ∈ (n− 1, n] and Γ(·) is the Gamma function [34]. In
case of α ∈ (1, 2), the equation (1) describes super-diffusive
process [15], [16], and for α = 2, we get the classical heat
conduction equation.

III. NUMERICAL SOLUTION

In this section we describe numerical solution of equation
(1) using the finite difference method. Let N,M ∈ N be
the size of grid in space and time, respectively. We denote
grid steps ∆x = (b−a)

N and ∆t = T/M . Therefore, we get
following grid

S =
{

(xi, tk), xi = i∆x, tk = k∆t, i = 0, 1, . . . , N,

k = 0, 1, 2, . . . ,M
}
.

(6)

We assume the following notation λi = λ(xi), gki =
g(xi, tk), fi = f(xi), hk = h(tk). Values of approximate
function in points (xi, tk), we denoted by Uki .

In order to approximate fractional derivative (5), we used
right-shifted Grünwald formula [17]

∂αu(x, t)

∂xα
=

1

Γ(−α)
lim
N→∞

1

rα

N∑
j=0

Γ(j − α)

Γ(j + 1)
u(x−(j−1)r, t),

(7)

where N ∈ N and r = x−a
N . We denote

ωα,j =
Γ(j − α)

Γ(−α)Γ(j + 1)
. (8)

Discretize the equation (1) and using approximation of
fractional derivative, we get

Uk+1
i − Uki

∆t
=

λi
2c%(∆x)α

( i+1∑
j=0

ωα,jU
k+1
i−j+1 +

i+1∑
j=0

ωα,jU
k
i−j+1

)
+
g
k+ 1

2
i

c%
.

(9)

Now, we approximate boundary condition of the third kind,
so we obtain

UkN =
λNU

k
N−1 + ∆xhku∞

λN + ∆xhk
. (10)

Having regard to both boundary condition, the equation (9)
may be written in matrix form

(IN−1−A1)Uk+1 = (IN−1+A2)Uk+Gk+ 1
2 ∆t, k = 0, 1, 2, . . . ,

(11)

where

Uk = [Uk1 , U
k
2 , . . . , U

k
N−1]T ,

Gk+ 1
2 ∆t =

[gk+ 1
2

1 ∆t

c%
, . . . ,

g
k+ 1

2

N−2∆t

c%
,

g
k+ 1

2

N−1∆t

c%
+
λN−1∆tu∞

2(∆x)α
( ∆xhk

λN + ∆xhk
+

∆xhk+1

λN + ∆xhk+1

)]
,

IN−1 is the identity matrix of size N−1×N−1, and matrices
A1 and A2 are defined as follows

i = 1, 2, . . . , N − 1, j = 1, 2, . . . , N − 1,

a1
ij =



λi∆t
2c%(∆x)αωα,i−j+1 j ≤ i− 1,

λi∆t
2c%(∆x)αωα,1 j = i ∧ i 6= N − 1,

λi∆t
2c%(∆x)α (ωα,1 + λN

λN+∆xhk+1 ) j = i = N − 1,

λi∆t
2c%(∆x)αωα,0 j = i+ 1,

0 j > i+ 1,

a2
ij =



λi∆t
2c%(∆x)αωα,i−j+1 j ≤ i− 1,

λi∆t
2c%(∆x)αωα,1 j = i ∧ i 6= N − 1,

λi∆t
2c%(∆x)α (ωα,1 + λN

λN+∆xhk
) j = i = N − 1,

λi∆t
2c%(∆x)αωα,0 j = i+ 1,

0 j > i+ 1,

Solving systems of equations defined by (11), we obtain
approximate values of temperatures in points of grid (6).

In paper [35] authors presents proof of unconditionally
stability of presented method in case of homogeneous Dirichlet
boundary condition. Doing similar proof it can be proven that
described in this paper method is unconditionally stable.

IV. EXPERIMENTAL RESULTS

In this section we presents numerical examples of described
method.

Example 1: Let consider equation (1), defined in area

D = {(x, t) : x ∈ [0, 1], t ∈ [0, 1]},

with following data

α = 1.7, λ(x) =
1

6
Γ(2.2)x2.8, c = % = 1, u∞ = 50,

g(x, t) = −(1 + x)x3e−t, h(t) = −0.550901e−t

e−t − 50
.
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To equation we added an initial condition

u(x, 0) = x3, x ∈ [0, 1].

Exact solution of this problem is function

u(x, t) = x3e−t.

Maximal and average absolute errors will be defined by
formulas

∆max = max
0≤i≤N
1≤k≤M

|uki − Uki |,

∆avg =
1

(N + 1)(M + 1)

N∑
i=0

M∑
k=0

|uki − Uki |.

Table I shows errors of approximate solution for different grids.

TABLE I. GRIDS, MAXIMAL ABSOLUTE ERRORS ∆max AND AVERAGE
ABSOLUTE ERRORS ∆avg (EXAMPLE 1)

Grid N ×M ∆max ∆avg

10× 10 6.24590 · 10−2 1.23295 · 10−2

10× 50 6.20448 · 10−2 1.26218 · 10−2

20× 20 3.09731 · 10−2 5.58958 · 10−3

50× 50 1.23473 · 10−2 2.08623 · 10−3

100× 100 6.16827 · 10−3 1.01756 · 10−3

100× 200 6.16490 · 10−3 1.01786 · 10−3

100× 300 6.16429 · 10−3 1.01808 · 10−3

200× 100 3.08626 · 10−3 5.02667 · 10−4

300× 100 2.05917 · 10−3 3.34012 · 10−4

With increase in the first dimension N of the grid, a
fixed second dimension M , errors decrease. For example, for
M = 100 and N = 100, 200, 300 absolute errors not exceed
6.17 ·10−3, 3.09 ·10−3, 2.06 ·10−3. Increasing the dimension
of the grid with respect to time for a fixed dimension N
insignificantly impact on errors of approximate solution.

Distribution of errors in points of the grid is presented on
figure 1.

Fig. 1. Distribution of errors (N = M = 100) (example 1)

Figure 2 presents exact, approximate solutions and errors
for time t = 1.
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Fig. 2. Distribution of errors for approximate solution (a) and approximate
solution (points), exact solution (solid line) (b) in time t = 1 (N = M = 100)
(example 1)

Example 2: Let consider again equation (1) with following
data

α = 1.9, λ(x) =
1

2
, c = % = 1, u∞ = 100, a = 1, b = 2,

g(x, t) = −2t(x−1)+0.0525569(t2−1)
(32.7273− 32.7273x

(x− 1)1.9
+

+
18.1818

(x− 1)0.9
+

15.5455− 31.0909x+ 15.5455x2

(x− 1)2.9

)
,

h(t) =
1
2 (1− t2)

99 + t2
.

and with initial condition

u(x, 0) = x− 1, t ∈ [0, 1].

Exact solution of this problem is given by function

u(x, t) = (x− 1)(1− t2).

Table II presents errors of approximate solution for different
grids.

TABLE II. GRIDS, MAXIMAL ABSOLUTE ERRORS ∆max AND
AVERAGE ABSOLUTE ERRORS ∆avg (EXAMPLE 2)

Grid N ×M ∆max ∆avg

10× 10 7.14165 · 10−4 4.40379 · 10−4

10× 50 6.25414 · 10−4 3.82786 · 10−4

20× 20 4.16933 · 10−4 2.54149 · 10−4

50× 50 2.11043 · 10−4 1.22171 · 10−4

100× 100 1.2352 · 10−4 6.88743 · 10−5

100× 200 1.23129 · 10−4 6.84358 · 10−5

100× 300 1.23059 · 10−4 6.83813 · 10−5

200× 100 7.64731 · 10−5 3.8691 · 10−5

300× 100 5.90598 · 10−5 2.74809 · 10−5

Similarly as in example 1, reducing the grid step ∆x results
in a significant reduction in average errors δavg and maximum
errors ∆max of approximate solution. Also, the density of
the grid in the time domain results in a slight decrease in
errors. Distribution of errors in the area of D, for example 2
is presented in the figure 3.

We also present distribution of errors for approximate
solution in time t = 1 (figure 4).

Example 3: Now, we take the following data
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Fig. 3. Distribution of errors (N = M = 100) (example 2)

a)

1.0 1.2 1.4 1.6 1.8 2.0

0

0.00002

0.00004

0.00006

0.00008

x

e
rr

o
r

b)

1.0 1.2 1.4 1.6 1.8 2.0

-0.00008

-0.00006

-0.00004

-0.00002

0

x

u
H

x
,1
L

Fig. 4. Distribution of errors for approximate solution (a) and approximate
solution (points), exact solution (solid line) (b) in time t = 1 (N = M = 100)
(example 2)

α = 1.6, λ(x) = 1, c = % = 1, u∞ = 120, a = 1, b = 2,

g(x, t) = − 5.15228

(x− 1)0.6
+

+
t3(0.0751374 + 1.87843(x− 1) + 0.375687x)

(x− 1)0.6
+3xt2(1−x),

h(t) =
8− 3t3

112 + 2t3
, f(x) = 8(x− 1).

Exact solution of this problem is represented by function

u(x, t) = 2(x− 1)(4− 1

2
xt3).

Just as it did in the previous examples, we will examine
the errors depending on the density of the grid. In table III
errors of approximate solutions are presented.

TABLE III. GRIDS, MAXIMAL ABSOLUTE ERRORS ∆max AND
AVERAGE ABSOLUTE ERRORS ∆avg (EXAMPLE 3)

Grid N ×M ∆max ∆avg

10× 10 1.2654 · 10−1 4.8953 · 10−2

50× 50 2.48109 · 10−2 1.2146 · 10−2

70× 70 1.77869 · 10−2 8.93166 · 10−3

100× 100 1.25078 · 10−2 6.41806 · 10−3

150× 150 8.38441 · 10−3 4.38665 · 10−3

V. CONCLUSION

In this paper numerical solution of space heat conduction
equation is presented. To the equation Robin and Neumann
boundary conditions were added. Author used Crank-Nicolson
scheme, and right-shifted Grünwald formula for approximation
fractional Riemann-Liouville derivative. To illustrate the accu-
racy of presented method three examples are presented. In each
example results are good. With an increase in the density of
the grid, errors of approximate solution decreases.
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