
Distributed and General Galois Lattice
For Large Data Bases

Fatma Baklouti and Gérard Lévy

CERIA Laboratory, Paris Dauphine University
Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France

{fatma.baklouti, glevy}@dauphine.fr

Distributed and General Galois Lattice For Large Data
Bases

F. Baklouti, G. Lévy

CERIA Laboratory, Paris Dauphine University
Place du Maréchal de Lattre de Tassigny 75775 Paris cedex 16, France

{fatma.baklouti, glevy}@dauphine.fr

Abstract. Large data processing is an essential problem in many data mining
application. Our work explores the algorithms calculating a Generalized Galois
Lattice (G2L) over a large collection of data. A G2L contains all the so-called
closed sets of a collection of tuples (individuals characterized by a set of
properties), G2Ls generalize to multivalued data the GL already popular in the
concept analysis using the binary values. They appear an attractive tool for data
mining. The G2L or GL calculus is CPU intensive. In practice, the current
techniques limit the approach only to small sets of data only, e.g., a hundred
tuples with a few dozens of properties each. Our research consists in building
scalable distributed G2L calculus algorithms. We think this research direction
promising and probably the only way towards our goal. We first have
implemented and analyzed some centralized algorithms. One termed ELL
seems to be the most efficient. We have defined therefore a scalable distributed
version of ELL termed SD-ELL. It recursively partitions the set of tuples for the
G2L computation over sufficiently many sites to let ELL execute fast enough at
each site. The closed sets produced by each site enter a common scalable
distributed data structure (SDDS). We then plan to test the resulting behavior
and analyze the performance of the algorithm and of some promising variants.

1 Introduction

A Galois Lattice (GL) allows extracting concepts and rules from other concepts.
Several algorithms determine the GL over a given context C, provided the size of C is
small, [4] [7] [8]. These algorithms apply to binary data. Their generalization, G2L
was proposed in [5]. An algorithm for G2L calculus termed ELL, and some alternative
ones, were subsequently defined in [6]. These algorithms, as any previous for a GL
computation, were designed for the single-site computations. It was known that they
could run in reasonable time only for small sets, e.g., at most of a few hundreds of
tuples.
Further analysis has shown that the most promising way towards larger sets of data,
the only of interest to the data mining, was to find some scalable distributed variant of
G2L calculus. This goal becomes the subject of our work.
We have defined therefore a scalable distributed version of ELL termed SD-ELL. It
recursively partitions the set of tuples for the G2L computation over sufficiently many

Radim Bělohlávek, Václav Snášel (Eds.): CLA 2005, pp. 197–206, ISBN 80–248–0863–3.

198 Fatma Baklouti, Gérard Lévy

sites to let ELL execute fast enough at each site. The closed sets produced by each site
enter a common scalable distributed data structure (SDDS). We then plan to test the
resulting behavior and analyze the performance of the algorithm.
The rest of the paper is organized as follows. In Section 2, we recall the definition of a
G2L. Section 2 recalls the main idea in ELL. Section 3 overviews the principles of our
scalable distributed extension, exploring the recursive G2L calculation in [6]. Section
4 concludes this paper by listing the future research direction.

2 General Galois Lattices

Concept lattice [9] and Closed itemset lattice are based on order theory and lattice
theory [3]. They are used to represent the order relation on concepts or closed
itemsets. Concept lattice describes the character of the set pair: intent and extent of
concept. And the general of Galois Lattice formalism was addressed by [16], [17].
In this section, we define some notions generalizing usual ones: Data context, Closure
operator, Closed itemset, etc.
Definition 1. A lattice is a mathematical structure F = < F, , , , 0F, 1F >, where F
is a partially ordered set by the relation , with the largest element 1F, a smallest
element 0F, and ,

are internal composition laws of sup (or supremum), and inf (or
infimum).
In many situations F is the Cartesian product of several lattices Fj = <Fj, j, j, j,
0Fj,1Fj>, for j J = {1,..., n}. We write this F=F1 x...x F x...x Fn.
The relation

on F is defined by z = (z1, ...,zj, ...,zn)

t = (t1, ...,tj, ...,tn) iff zj j tj for
each j of J . We note z

t = (..., zj j tj,....), z

t = (..., zj j tj,), OF = (....,OFj, ...
), 1F = (..., 1Fj,). (For standard Galois lattices, we have for each j: Fj = {0, 1}, 0 < 1,
0 j 0 = 0, 0 j 1 = 1 j 0 = 1 j =1, 0 j 0 = 0 j 1 = 1 j 0 = 0, 1 j 1 = 1. So OF = (....,
0, ...), and 1F = (..., 1,...)).
Definition 2. General contexts and descriptions:
Let m be a finite positive integer, I = {1,..., m} = [1, ,m], and F any lattice. Let
d:I F be any mapping from I to F. A context C is defined as an array with rows d (i),
i = 1, ..., m.
Formalism: The context provides, for each individual or object i of I, its description
d(i)=(d1(i), d2(i), , dj(i),..., dn(i))

F = F1 x x Fn, according to the attributes or
properties j J. (In the standard case, dj(i)=1 means that i has property j, and dj(i) =
0 means that i has not the property j). So, in the general case, C is an m x n array of
elements dj (i) of F, and for each individual i and each property j, dj (i) is the value of
this property for i.
Definition 3. Galois connection:
Let C = <I, F, d> be a context. We define E = P(I), |E|=2l and f: E F as follows: for
each subset X of I, f(X) =

d(i): i X} if X

, and f() = 1F.
So, f(X) is the infimum of the descriptions d(i) of elements i of X. And in the standard
case f(X) is an element z = (z1,..., zj, ...) of F, and zj = j {dj(i) : i

X} = 1, iff
dj(i)=1, for each i of X. This means that zj = 1 iff j is a property which belongs to all
i in X. For this reason, we call f (X) the intent of X.

Distributed and General Galois Lattice for Large Data Bases 199

Remark:
For each i of I, we have f({i}) = d(i), and f is decreasing (if X

X

I then f(X)

f(X)).
We define g: F E by g(z) = {i I: z d(i)}, for each z of F.
We say that g(z) is the extent of z. (In standard case, g(z) is the set of all individuals
who have all properties of z, zj = 1).
We can see that g is also a decreasing mapping.
The ordered pair (f, g) is called a Galois connection. From it we derive two other
mappings:
h : P(I) P(I), by h = g f, and k = F F by k = f g.
So, for each subset X of I, we have h(X) = g(f(X)) = {i

I: f(X)

d(i)}, and for
each z of F, we have k(z) = f(g(z)) = {d(i): i g (z)}.
We can see that h and k are closure operators. This means that each of them is an
increasing, extensive, and idempotent operator. More explicitly, for each X, X of E,
and z, z of F:

X

X implies that h(X)

h(X), z

z implies that k(z)

k(z);

X h(X), z k(z);

h(h(X)) = h(X), k(k(z)) = k(z) .
Any subset X of I such that X = h(X) is called a I-closed set, and each z of F such that
z = k(z) is called F-closed element.
Let us define H = {X I: h(X) = X} the set of all closed subsets of I, and K = {z F:
z = k(z)}, the set of all closed elements of F.
One can proof that there is a bijective mapping between H and K. The ordered pairs
(X, z)

H x K such that f(X) = z, and therefore such that g(z) = X, are called the
concepts associated with the context C.
The set of all such concepts constitutes the Galois lattice GL(C) associated with this
context C. (the order relation on GL(C) is defined by (X, z)

(X, z) iff X

X and
z z.)

3 ELL algorithm

This algorithm was proposed in [6]. We have subsequently improved it and compared
to some other algorithms [2]. This comparison has shown better performance of ELL.
This motivated our choice for this algorithm as a single-set G2L computation.
 Main idea:
For two disjoint subsets X0 and K of the set of objects I, let ELL (X0, K) denote a
procedure which lists all the closed sets of I obtained by extending X0 with some
elements of K.
In other words, ELL (X0, K) lists all the closed sets, which strictly contain X0 and are
contained in X0 U K. Obviously, ELL (Ø, I) lists all the non-empty closed sets of I.
ELL (X, K) proceeds by dichotomy as follows:

200 Fatma Baklouti, Gérard Lévy

 If (K Ø)

 Choose an element i0 K
 Find the closed sets which contain i0

 Find the closed sets which do not contain i0

 Endif

The key point of the proposed algorithm is that the search time of such closed sets is
considerably reduced by using the following proposition.
Proposition:

Let X0 and K

Ø be two disjoint subsets of I. Let i0 K.
We have: h(X0 U {i0}) = X0 U A where A = {i I\X0: f(X0) f(i0) f(i)}
If a closed set contains X0 and i0, then it also contains A. Hence, if A K then X0UA
is the smallest closed set containing X0 and i0 and contained in X0 U K.
If a closed set contains X0 and does not contain i0, then it also does not contain any
element of the set: R = {i K: f(X0) f(i) f(i0)}.
A (vs. R) is used for Attraction (vs. Rejection). The proof of this proposition is in [6].
The following pseudo-code is a recursive version of the algorithm.

Procedure ELL (X0, K)
 GL = Ø // GL is a list of concepts

 Var i0: element of I, z, z0: elements of F; X, A, R: subsets of I;
 begin

 z0 = f(X0);
 if K Ø then
 begin

 Choose an element i0 of K;
 z = z0 f(i0); A = {i I\X0: z f(i)};
 if

A K then
 begin

 X = X0 U A; insert node (X, z) in GL;
 ELL (X, K\A);
 end;
 R = {i

K: z0

f(i) f(i0)}; ELL (X0, K\R);
 end

end

The procedure ELL (Ø, I) starts with any i0

I (I is non empty). Then it determines
the set A. Observing that i0

A, we have the strict inclusions Ø

X and I\A

I.
Hence if A K, ELL (X, I\A) will run with a strictly smaller second parameter. Since
i0

R, we see that the same holds for ELL (X, I\R).
More generally ELL (X, K\A) and ELL (X0, I\R) run with a strictly smaller second
parameter than that of ELL (X, K). Since I is finite, this parameter which is a subset
of I, will reach the void set and the procedure will terminate.
This algorithm lists all closed sets without duplicates. Let us show that each closed set
F occurs exactly once.

Distributed and General Galois Lattice for Large Data Bases 201

Starting with GL = Ø, X0 = Ø and K = I, let i0

I be fixed and consider two cases:

i0 F and i0 F. If i0 F then

Either F is the smallest closed set which contains i0. Then according to the
previous proposition (a), F=X=X0 U A and F will be listed by ELL (X0, K),

Or F is not the smallest closed set which contains i0. In this case X F and F
will be listed by ELL (X, K\A).

If i0

F, then according to the previous proposition (c), F will be listed by
ELL(X0,K\R). Since each insert only concerns the unique smallest closed set
containing X0 and i0, we see that F occurs exactly once.
The only case not treated by the algorithm is whether the empty set is closed or not.
The algorithm yields all the nodes (X, z) of the GL such that X Ø. Since f(Ø) = 1F

and h(Ø) ={i

I: 1F

f(i)} = {i

I : f (i) = 1F}, Ø is closed iff there is no i

I such
that f(i) = 1F.

4 Scalable Distributed G2L calculus

We proposed a first solution in [1] which describes a way to parallelize the large
contexts, by sharing a context C into sub-contexts depending on its rows or columns.
Galois lattices associated with these sub-contexts are built, with the ELL, in different
computers and then the global lattice is determined from these lattices. The algorithms
used for the build of this global lattice are detailed in [1]. This solution was
successfully tested. The study has shown that the time complexity appeared excessive
for larger sets we have wished.
We have designed therefore a new solution to parallelize the work. It is based on a
new algorithm, termed SD-ELL. The key idea is a recursive application of ELL.

4.1 SD-ELL algorithm

SD-ELL is composed of two algorithms. The first one computes the sets of objects Ki

(i={1, , n}, n is the number of the computed sets Ki) and the second one is
duplicated on different machines to compute all the closed sets corresponding to each
Ki.
The algorithm presented in the following table permits computing the sets Ki. It
proceeds as follows:

Choose an element i0 K

Compute the sets A and R

Verify if A K then (X, Z) is a closed itemset and Ki = K\A

Ki+1 = K\R
The previous steps are reused with the parameters Xi and Ki. The process of
decomposing Ki is stopped if |Ki| is smaller than a fixed threshold or the total number
of machine, in which the closed itemsets corresponding to each Ki are computed, is
used.

202 Fatma Baklouti, Gérard Lévy

Procedure KCompute(X0,K0,z0)

 LF = Ø; List of (K, X, z)
 t = 1, q = 1, Xt = Ø, Kt = I, zt = 1F.

while ((t q) and ((q - t + 1) site number))
 begin
 X0 = Xt; K0 = Kt; z0=zt

 Choose an element i0 of K
 z = z0

f (i0);
 A = {i I\X0: z f(i)};
 R = {i

K: z0

f(i) f(i0)};
 if A K0 then
 begin

 X = X0

A; z = z0

f(i0); K = K0\A;
 LF = LF (X, z)
 q=q+1; Xq = X; Kq = K; zq = z;
 end
 q = q + 1; Xq = X0; Kq = K0\R; zq = z0; t = t + 1;

end

The second algorithm constituting SD-ELL is the iterative version of ELL (I-ELL)
duplicated on different machines. This version is detailed in [6] and [2].
Let us use the context C from the example described below to illustrate how these two
algorithms work.

For this example the threshold is 4 and the number of machine is 4.
The dispatcher executes the first algorithm (KCompute). KCompute starts with the
parameters X0=Ø and K= I ={1,2,3,4,5,6}. An element i0 is chosen such as i0=1 and
then the sets A, K1, R, and K2 are computed.

z = z0 f (i0) = {12,16,6,10,12,13,12,6}, A = {i I \ X0: z f (i)}={1}. Then A K:

X1=X0UA={1} and C2({1};{12,16,6,10,12,13,12,6}) is a concept.

K1 = K\A = {2,3,4,5,6}; |K1| 4, K1 must then be decomposed.

R = {i

K: z0

f (i)

f (i0)} = {1}

K2 = K\R = {2,3,4,5,6}; |K2|

4, K2 must
also be decomposed.
The previous steps are reused with the parameters (X1 = {1}, K1) and (X0=Ø, K2).

O\A a b c d e f g h
1 12 16 6 10 12 13 12 6
2 12 12 8 12 11 13 11 8
3 10 13 16 14 11 8 12 10
4 13 14 11 10 13 13 12 14
5 17 10 10 14 13 10 14 12
6 0 14 3 8 4 13 11 10

Distributed and General Galois Lattice for Large Data Bases 203

Decomposition of K1: Choosing i0 K1 such as i0 = 2.

z = z0

f (i0) = {12,12,6,10,11,13,11,6}, A = {i

I \ X: z f (i)} = {2,4}. Then

A K1:

X3 = X1 U A = {1,2,4} and C3 ({1,2,4};{12,12,6,10,11,13,11,6}) is a concept.

K3 = K1 \ A = {3,5,6} (|K3| 4)
 R = {i K1: z0 f (i) f (i0)} = {2}

K4 = K1\R = {6,3,4,5} (|K4| 4) with
X4={1}.
Decomposition of K2: Choosing i0 K2 such as i0=2.

z = z0 f (i0) = {12,12,8,12,11,13,11,8}, A={i I \ X: z f (i)} = {2}. Then A K2:

X5 = X0 U A = {2} and C4({2};{12,12,8,12,11,13,11,8}) is a concept.

K5 = K2\A = {3,4,5,6} (|K5| 4)
 R = {i K2: z0 f (i)

f (i0)} = {2}

K6 = K2\R = {6,3,4,5} (|K6| 4) with
X6=Ø.
Then, the dispatcher sends to the applications the parameters (K3,X3) (K4,X4) (K5,X5)
(K6,X6). In parallel, the applications, described in the subsection 4.2, execute the I-
ELL.
The following sets Ei are the sets of concepts generated by I-ELL(Ki+2, Xi+2) in the
applications Ai.

The set of concepts E1 generated by
I-ELL (K3,X3).
C5({1,2,4,3};{10,12,6,10,11,8,11,6})
C6({1,2,4,3,5};{10,10,6,10,11,8,11,6})
C7 ({1,2,4,3,5,6};{0,10,3,8,4,8,11,6})

C8({1,2,4,3,6};{0,12,3,8,4,8,11,6})
C9 ({1,2,4,5};{12,10,6,10,11,10,11,6})
C10 ({1,2,4,5,6};{0,10,3,8,4,10,11,6})

 C11 ({1,2,4,6} ;{0,12,3,8,4,13,11,6})

The set of concepts E2 generated by
I-ELL(K4, X4).
C12({1,6,4};{0,14,3,8,4,13,11,6})
C13({1,6,4,3};{0,13,3,8,4,8,11,6})
C14({1,3,4};{10,13,6,10,11,8,12,6})

 C15 ({1,3,4,5};{10,10,6,10,11,8,12,6})
C16 ({1,5,4};{12,10,6,10,12,10,12,6})

 C17({1,4};{12,14,6,10,12,13,12,6})

The set of concepts E3 generated by
I-ELL(K5, X5).
C18({2,3};{10,12,8,12,11,8,11,8})
C19({2,3,4};{10,12,8,10,11,8,11,8})
C20({2,3,4,5};{10,10,8,10,11,8,11,8})

 C21({2,4,3,5,6};{0,10,3,8,4,8,11,8})
C22({2,4,3,6}; {0,12,3,8,4,8,11,8})
C23({2,3,5};{10,10,8,12,11,8,11,8})
C24({2,6,4};{0,12,3,8,4,13,11,8})
C25({2,6,4,5};{0,10,3,8,4,10,11,8})
C26({2,5};{12,10,8,12,11,10,11,8})
C27({2,5,4};{12,10,8,10,11,10,11,8})

 C28({2,4};{12,12,8,10,11,13,11,8})

The set of concepts E4 generated by
I-ELL(K6, X6).
C29({6,4);{0,14,3,8,4,13,11,10})
C30{6,4,3}; {0,13,3,8,4,8,11,10})
C31({6,4,3,5};{0,10,3,8,4,8,11,10})
C32({6,4,5};{0,10,3,8,4,10,11,10})
C33({3};{10,13,16,14,11,8,12,10})

 C34({3,4};{10,13,11,10,11,8,12,10})
C35({3,4,5};{10,10,10,10,11,8,12,10})
C36({3,5};{10,10,10,14,11,8,12,10})
C37({4};{13,14,11,10,13,13,12,14})

 C38({4,5};{13,10,10,10,13,10,12,12})
 C39 ({5};{17,10,10,14,13,10,14,12})

The union of E1, E2, E3, E4, and the concepts calculated in the dispatcher is the set of
all concepts corresponding to the context C.

204 Fatma Baklouti, Gérard Lévy

4.2 The Architecture

A major problem for the final efficiency of SD-ELL is the storage of the collection of
the closed produced, presumably very large and of unknown size. Our tool is a
Scalable Distributed Data Structure (SDDS). An SDDS dynamically distributes over
the (server) nodes whose number dynamically scales with the file growth. The
application accesses the file through the client nodes making the data distribution
transparent. For scalability, the data address calculations do not involve any
centralized directory. The data are also basically stored in the distributed RAM, for
faster access than to the traditional disk-based structures [10]. All these properties are
prime importance for our goal.
Our first architecture for SD-ELL, illustrated below, calculus is to add to the SDDS
structure of clients and servers, a dispatcher and our applications at each available
client site. The dispatcher executes the first algorithm of SD-ELL. It then sends to the
applications the parameters Ki and Xi. In parallel, on each client the iterative version
is executed with its parameters. We obtain the closed itemsets that after the calculus
partition the Galois lattice. The closed sets are sent by the clients to the servers, where
they are saved.

Dispatcher

(KCompute)

K1, X1
Ki, Xi Kn, Xn

Application

I-ELL(Ki,Xi) Ei

Application

I-ELL(Kn,Xn) En

Application

I-ELL(K1,X1) E1

Client
E1

Client
Ei

Client
En

Server NameServer

Buckets in RAM

Server

Buckets in RAM

Server

Buckets in RAM

Dispatcher

(KCompute)

K1, X1
Ki, Xi Kn, Xn

Application

I-ELL(Ki,Xi) Ei

Application

I-ELL(Kn,Xn) En

Application

I-ELL(K1,X1) E1

Client
E1

Client
Ei

Client
En

Server NameServer NameServer

Buckets in RAM

Server

Buckets in RAM

Server

Buckets in RAM

Server

Buckets in RAMBuckets in RAM

Server

Buckets in RAM

Server

Buckets in RAM

The dispatcher is a centralized component. To offset the potential drawbacks of this
approach, we have designed also a more distributive solution. The dispatcher
calculates only the set K1 and K2 (K1=K0\A and K2 =K0\R) and sends them to two
applications. These applications become dispatchers on there turn. They send to other

Distributed and General Galois Lattice for Large Data Bases 205

applications the parameters Ki and Xi if Ki is greater than a fixed threshold and there
are available machines.
We will first implement and measure the 1st solution. Later we will also design the
end one and compare the related trade-offs.
Our preliminary experimentations has shown that the processing time of the
distributed SD-ELL algorithm out performs the processing time of the ELL algorithm.
Besides, increasing the number of processors improves the processing time.

5 Related work

In [12], Ndoundam and al. proposed a methodology which permits implementing a
parallel version of Bordat [14] through the parallelization of nested loops.
Nevertheless, this parallelization is incompleted as proved by [13] how propose a
better fine-grain parallelization.
By another way, [15] present a parallel version of Ganter algorithm [7] for large
context which relies on a partitioning of the search space. Let us note that all these
previous works do not provide effective implementation of the parallel algorithms.
Only [11] propose a validation of their theoretical model through an effective
implementation.

6 Conclusion

 In this paper, we propose a new algorithm (SD-ELL) which is a distributed version of
ELL, in order to deal with large databases. The architecture used for this distribution
allows to share the computation of closed sets of large databases on the different
applications and to store them in the server nodes. The storage of the great number of
closed sets is successful since the number of server nodes dynamically scales with the
growth of the closed itemsets file. Our ongoing research consists in continuing the
evaluating of the prototype performance measurements. A possible future research
direction consists in determining the links between the concepts and then comparing
our results with the results of [11].

References

1. Baklouti. F, Lévy. G. Parallel algorithms for general Galois lattices building. Proc.
WDAS 2003.
2. Baklouti. F, Lévy. G. A fast and general algorithm for Galois lattices building.
Journal of Symbolic Data Analysis. Vol 3. pp. 19-31.
3. Birkhoff. G. Lattice Theory. American Mathematical Society, Providence, RI, 3rd
edition. 1967.
4. Bordat. J. Calcul pratique du treillis de galois d une correspondance,
Mathématique, Informatique et Sciences Humaines 24(94), 31. 1986.

206 Fatma Baklouti, Gérard Lévy

5. Diday. E, Emilion. R. Treillis de Galois maximaux et capacités de Choquet. Cahier
de Recherche de l Acadèmie des Sciences. Paris, t.325, Série I, p.261-266, 1997.
6. Emilion. R. Lambert. G, Lévy. G, Algorithmes pour les treillis de Galois, Indo-
French Workshop, University Paris IX-Dauphine. 1997.
7. Ganter. B. Two basic algorithms in concept analysis. Preprint 831, Technische
Hochschule Darmstadt 1984.
8. Godin. R., Mineau. G. and al. Méthodes de classification conceptuelle bases sur les
treillis de Galois et application. Revue d intelligence artificielle pp 105-137. 1995.
9. Ganter. B, Wille. R. Formal Concept Analysis. Mathematical Foundations,
Springer. 1999.
10. Litwin. W., Neimat, M-A., Schneider. D. A Scalable Distributed Data Structures.
ACM Transactions on Database Systems (ACM-TODS), Dec. 1996.
11. Valtchev, P., Djoufak Kengue, J,F., Djamegni C,T., A parallel algorithm for
lattice construction, in the proceding of the third ICFCA, February 2005, Lens, Fance.
pp 249-264.
12. Ndoundam, R., Njiwoua, P., Mephu Nguifo, E. Une etude comparative de la
parallelisation d algorithmes de construction de treillis de Galois. Atelier francophone
de la plate forme de l AFIA. Usage des treillis de Galois pour l intelligence
artificielle, ESIEA Recherche (2003).
13. Njiwoua, P., Mephu Nguifo, E. A parallel algorithm to build concept lattice. In
proceedings of the fourth Groningen Int. Information Tech. Conf. for students (1997).
14. Bordat, J.P. Calcul pratique du treillis de Galois d une correspondance.
Mathématiques et Sciences Humaines, Vol. 96 (1986) 31-47.
15. Fu, H., Mephu Nguifo, E. A parallel algorithm to generate formal concepts for
large data. In proceedings of the second international conference on formal concept
analysis (ICFCA04), springer LNCS, Sydney Australia (2004).
16. Diday. E, Emilion. R. Treillis de Galois maximaux et capacités de Choquet.
Cahier de Recherche de l Acadèmie des Sciences. Paris, t.325, Série I, p.261-266,
1997.
17. Diday. E, Emilion. R. Maximal and stochastic Galois lattices , Discrete Applied
Mathematics, 127, (2003), 271-284.

Acknowledgements

We would like to express special thanks to Pr. Witold Litwin for his precious remarks
and his help for using the SDDS.

