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Abstract. Answer Set Programming (ASP) is a well-known declarative pro-
gramming language for knowledge representation and non-monotonic reasoning.
ASP solvers are usually written in C/C++ with the aim of extremely optimiz-
ing their performance. Indeed, C/C++ allow for several low level optimizations,
which however come at the price of a less portable implementation. This is a
problem for some real world use cases which do not actually require anextremely
efficient computation, but would benefit from a platform-independentand easily-
deployable implementation. Motivated by such use cases, we developJWASP, a
new ASP solver written in Java and extending the open source librarySAT4J in or-
der to process ASP programs with atomic heads. We also report on a preliminary
experiment assessing the performance ofJWASP, whose results are encouraging:
JWASPis a good candidate as an alternative ASP solver for platform-independent
applications, which cannot rely on current ASP solvers.

1 Introduction

Answer Set Programming (ASP) [5] is a declarative programming paradigm, which has
been proposed in the area of non-monotonic reasoning and logic programming. The idea
of ASP is to represent a given computational problem by a logic program whose answer
sets correspond to solutions, and then use a solver to find them [5]. The availability of
solvers has made possible the application of ASP for solvingcomplex problems arising
in several areas [1, 6], including AI, knowledge representation and reasoning, databases,
bioinformatics. Recently ASP has been also used to solve a number of industry-level
applications [7, 21].

Answer set programming is computationally hard, and modernASP solvers are usu-
ally based on one of two alternative approaches. The first of these approaches consists
in implementing a native algorithm by adapting SAT solving techniques [22]. In par-
ticular, CDCL backtracking with learning, restarts, and conflict-driven heuristics is ex-
tended with ASP-specific propagation techniques such as support inference via Clark’s
completion, and well-founded inference via source pointers [23]. The second approach
resorts on rewriting techniques into SAT formulas, which are then evaluated by an off
the shelf SAT solver [13].

ASP solvers, like SAT solvers, are developed having in mind the (often well-deserved)
goal of maximizing performance. For this reason, ASP solvers are usually written in
C/C++, a programming language that is suited for implementing several low level opti-
mizations, but at the price of a reduced portability. This isa problem for some real world
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use cases which do not actually require the highest available performance in computa-
tion, but would benefit from a platform-independent and easily-deployable implemen-
tation. For example, the iTravel system [20] takes advantage of some ASP-based web
services implemented as Java servlets interacting withDLV [16] via the DLV WRAP-
PERAPI [19]. Usually, Java servlets are easily exportable as WAR archives, which are
then deployable to different servers by simply copying the archives. Such a simplicity
was not possible with the ASP-based web services because different versions ofDLV

were required for servers running different operating systems. A similar issue also af-
fects the distribution ofASPIDE [9], an IDE for ASP developed in Java which must
include different versions of an ASP solver for different operating systems. An ASP
solver implemented in Java would simplify the distributionof ASPIDE, not preventing
the possibility to run other ASP solvers written in C/C++ if needed.

If on the one hand Java provides all the means for implementing a platform-inde-
pendent ASP solver, on the other hand the following questions have to be answered:
How much overhead is introduced? Is the performance of an ASPsolver written in Java
acceptable when compared with state of the art ASP solvers? Motivated by the needs
arising in different use cases, and in order to answer these two questions, we developed
JWASP (https://github.com/dodaro/jwasp.git), a new ASP solver writ-
ten in Java.JWASPis based on the open source librarySAT4J [15]. In particular,JWASP

extendsSAT4J in order to process ASP programs with atomic heads.
A preliminary experiment assessing the performance ofJWASPhas been conducted

on benchmarks from the previous ASP competitions [1, 6]. In particular, JWASP was
compared with the following state of the art ASP solvers: thenativeCLASP 3.1.1 [11]
andWASP [3]; the rewriting-basedLP2SAT endowed byGLUCOSE[4]; andLP2SAT en-
dowed bySAT4J [15]. The results are encouraging. In fact, even ifJWASPcannot match
the performance ofCLASP, which is actually expected, it can compete with a prominent
rewriting-based ASP solver usingGLUCOSE. Our experiment highlights thatJWASP is
a good candidate as an alternative ASP solver for platform-independent applications,
where conventional solvers cannot be used or might not be comfortably integrated.

2 Preliminaries

Syntax and semantics of propositional logic and propositional ASP are briefly intro-
duced in this section.

2.1 Propositional Logic

Syntax.LetA be a fixed, countable set of (Boolean) variables, or (propositional) atoms,
including⊥. A literal ℓ is either an atoma, or its negation¬a. A clauseis a set of
literals representing a disjunction, and a propositional formulaϕ is a set of clauses
representing a conjunction, i.e., only formulas inconjunctive normal form(CNF) are
considered here.

Semantics.An interpretationI is a set of literals over atoms inA\{⊥}. Intuitively, lit-
erals inI are true, literals whose complement is inI are false and the remaining literals
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are undefined. An interpretationI is total if there are no undefined literals, otherwise
I is partial. An interpretationI is inconsistent if for an atoma botha and¬a are inI.
Relation|= is inductively defined as follows: fora ∈ A, I |= a if a ∈ I, andI |= ¬a
if ¬a ∈ I; for a clausec, I |= c if I |= ℓ for someℓ ∈ c; for a formulaϕ, I |= ϕ if
I |= c for all c ∈ ϕ. If I |= ϕ thenI is amodelof ϕ, I satisfiesϕ, andϕ is true w.r.t.
I. If I 6|= ϕ thenI is not a model ofϕ, I violatesϕ, andϕ is false w.r.t.I. Similar for
literals, and clauses. A formulaϕ is satisfiableif there is an interpretationI such that
I |= ϕ; otherwise,ϕ is unsatisfiable.

Example 1.Consider the following formulaϕ:

{a,¬b} {b,¬a} {¬a} {c} {c,¬b}

ϕ is satisfiable and the interpretationI = {¬a,¬b, c} is a model. ✁

2.2 Answer Set Programming

Syntax. Let ∼ denotenegation as failure. A ∼-literal (or just literal when clear from
the context) is either an atom (a positive literal), or an atom preceded by∼ (a negative
literal). A logic programΠ is a finite set of rules of the following form:

a← b1, . . . , bk,∼bk+1, . . . ,∼bm (1)

wherem ≥ 0, anda, b1, . . . , bm are atoms inA. For a ruler of the form (1), set{a} is
calledheadof r, and denotedH(r); conjunctionb1, . . . , bm,∼bk+1, . . . ,∼bm is named
bodyof r, and denotedB(r); the sets{b1, . . . , bk} and{bk+1, . . . , bm} of positive and
negative literals inB(r) are denotedB+(r) andB−(r), respectively. Aconstraintis a
rule r such thatH(r) = {⊥}.

Semantics.An interpretationI is a set of∼-literals over atoms inA \ {⊥}. Relation|=
is extended as follows: for a negative literal∼a, I |= ∼a if ∼a ∈ I; for a conjunction
ℓ1, . . . , ℓn (n ≥ 0) of literals,I |= ℓ1, . . . , ℓn if I |= ℓi for all i ∈ [1..n]; for a rule
r, I |= r if H(r) ∩ I 6= ∅ wheneverI |= B(r); for a programΠ, I |= Π if I |= r
for all r ∈ Π. The definition of a stable model is based on a notion of program reduct
[12]: Let Π be a normal logic program, andI an interpretation. The reduct ofΠ w.r.t.
I, denotedΠI , is obtained fromΠ by deleting each ruler such thatB−(r) ∩ I 6= ∅,
and removing negative literals in the remaining rules. An interpretationI is an answer
set forΠ if I |= Π and there is no total interpretationJ such thatJ ∩ A ⊂ I ∩ A and
J |= ΠI . The set of all answer sets of a programΠ is denotedSM(Π). ProgramΠ is
coherentif SM(Π) 6= ∅; otherwise,Π is incoherent.

Example 2.Consider the following programΠ:

a← c a← b,∼e b← a,∼e
c← ∼d d← ∼c e← ∼d

I = {a,∼b, c,∼d, e} is an answer set ofΠ. ✁
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Fig. 1.Computation of an answer set inJWASP.

3 Answer Set Computation inJWASP

In this section we first review the algorithms implemented inJWASP for the computa-
tion of an answer set, and then we describe how these were implemented by extending
SAT4J. The presentation is properly simplified to focus on the mainprinciples.

3.1 Main Algorithms

The main algorithm is depicted in Figure 1.

Preprocessing.The first step is a preprocessing of the input programΠ, that is trans-
formed into a propositional formula called theClark’s completionof the programΠ,
denotedComp(Π). This step is performed since answer sets are supported models [17].
A modelI of a programΠ is supportedif eacha ∈ I ∩A is supported, i.e., there exists
a ruler ∈ Π such thatH(r) = a, andB(r) ⊆ I. In more detail, given a ruler ∈ Π,
let auxr denote a fresh atom, i.e., an atom not appearing elsewhere, the completion of
Π consists of the following clauses:

– {¬a, auxr1 , . . . , auxrn} for each atoma occurring inΠ, wherer1, . . . , rn are the
rules ofΠ whose head isa;

– {H(r),¬auxr} and{auxr} ∪
⋃

a∈B+(r) ¬a ∪
⋃

a∈B−(r) a for each ruler ∈ Π;
– {¬auxr, ℓ} for eachr ∈ Π andℓ ∈ B(r).
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After computing the Clark’s completionComp(Π), the input is further simplified ap-
plying classical preprocessing techniques of SAT solvers [8], and then the nondetermin-
istic search takes place.

CDCL Algorithm. The main ASP solving algorithm is similar to the CDCL procedure
of SAT solvers. In the beginning a partial interpretationI is set to∅. Function unit
propagation extendsI with those literals that can be deterministically inferred. This
function returns false if an inconsistency (or conflict) is detected, true otherwise. When
an inconsistency is detected, the algorithm analyzes the inconsistent interpretation and
learns a clause using the1-UIP learning scheme [18]. The learned clause models the
inconsistency in order to avoid exploring the same search branch several times. Then,
the algorithm unrolls choices until consistency ofI is restored, and the computation
resumes by propagating the consequences of the clause learned by the conflict analysis.
If the consistency cannot be restored, the algorithm terminates returningINCOHERENT.
When no inconsistency is detected, the well founded propagation (detailed in the fol-
lowing) checks whetherI is unfounded-free. In caseI is not unfounded-free a clause
is added toComp(Π) and unit propagation is invoked. IfI is unfounded-free and the
interpretationI is total then the algorithm terminates returningCOHERENTandI is an
answer set ofΠ. Otherwise, an undefined literal, sayℓ, is chosen according to some
heuristic criterion. The computation then proceeds onI ∪ {ℓ}. Unit propagation and
well founded propagation are described in more detail in thefollowing.

Propagation rules.JWASPimplements two deterministic inference rules for pruning the
search space during answer set computation. These propagation rules are namedunit
andwell founded. Unit propagation is applied first. It returns false if an inconsistency
arises. Otherwise, well founded propagation is applied. Well founded propagation may
learn an implicit clause inΠ, in which case unit propagation is applied on the new
clause. More in details, unit propagation is as in SAT solvers: An undefined literalℓ is
inferred by unit propagation if there is a clausec that can be satisfied only byℓ, i.e.,c
is such thatℓ ∈ c is undefined and all literals inc \ {ℓ} are false w.r.t.I. Concerning
well founded propagation, we must first introduce the notionof an unfounded set. A
setX of atoms isunfoundedif for each ruler such thatH(r) ∩ X 6= ∅, at least
one of the following conditions is satisfied: (i) a literalℓ ∈ B(r) is false w.r.t.I; (ii)
B+(r) ∩ X 6= ∅. Intuitively, atoms inX can have support only by themselves. Well
founded propagation checks whether the interpretation contains an unfounded setX. In
this case, it learns a clause forcing falsity of an atom inX. Clauses for other atoms inX
will be learned on subsequent calls to the function, unless an inconsistency arises during
unit propagation. In case of inconsistencies, indeed, the unfounded setX is recomputed.

3.2 Implementation

The implementation of a modern and efficient ASP solver requires the implementation
of at least three modules. The first module is the parser of a ground ASP program.
The second module computes the Clark’s completion. The third module implements
the CDCL backtracking algorithm extended by applying well founded propagation as
presented in Section 3.1. Concerning the parser,JWASPaccepts as input normal ground
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programs expressed in the numeric format ofGRINGO [10]. The Clark’s completion is
computed after the whole program has been parsed. The third module is implemented
by JWASPexploiting the open source Java librarySAT4J [15]. In particular,SAT4J pro-
vides an implementation of the base CDCL algorithm.JWASP extends this algorithm
by modifying the propagate function ofSAT4J, which in our solver includes the well
founded inference rule. In particular, specific data structures and the algorithm for com-
puting unfounded sets are introduced inJWASPwhich are not provided bySAT4J.

4 Experiment

The performance ofJWASPwas compared withCLASP 3.1.1 andLP2SAT [13]. CLASP

is a native state of the art ASP solver, whileLP2SAT is an ASP solver based on a rewrit-
ing of the ASP program into a SAT formula that is evaluated using a SAT solver. Two
variants ofLP2SAT were considered, namelyLP2GLUCOSEandLP2SAT4J, which use
GLUCOSE [4] and SAT4J [15] as SAT solver, respectively. All the ASP solvers use
GRINGO [10] as grounder. The experiment concerns a comparison of the solvers on
publicly available benchmarks used in the 3rd and 4th ASP competitions [1, 6]. The
experiment was run on a four core Intel Xeon CPU X3430 2.4 GHz,with 16 GB of
physical RAM, and operating system Debian Linux. Time and memory limits were set
to 600 seconds and 15 GB, respectively. Performance was measured using the tools
pyrunlim and pyrunner (https://github.com/alviano/python).

Table 1 summarizes the number of solved instances and the average running time
in seconds for each solver. In particular, the first column reports the considered bench-
marks; the remaining columns report the number of solved instances within the time-out
(solved), and the running time averaged over solved instances (time). The first obser-
vation is thatJWASPoutperforms the rewriting-basedLP2SAT4J. In fact,JWASPsolved
17 more instances thanLP2SAT4J and it is in general faster. The advantage ofJWASP

is obtained in 3 different benchmarks, namely KnightTour, MazeGeneration, and Num-
berlink, whereJWASPsolves 5, 7, and 3 more instances thanLP2SAT4J. Once the SAT
solver backhand is replaced byGLUCOSE, a clear improvement of performance is mea-
sured.LP2GLUCOSE is clearly faster (it solves 20 instances more) thanLP2SAT4J. In

Table 1.Solved instances and average running time.

LP2SAT4J JWASP LP2GLUCOSE WASP CLASP

Track # sol. avg t sol. avg t sol. avg t sol. avg t sol. avg t

GraphColouring 30 8 47.45 7 31.07 14 124.02 8 66.15 13 129.98
HanoiTower 30 27 120.80 26 166.57 30 10.41 30 33.83 28 53.18
KnightTour 10 2 67.66 7 52.03 3 24.37 8 4.39 10 57.95
Labyrinth 30 14 222.34 17 158.44 18 151.70 26 72.64 26 48.05
MazeGeneration 10 3 332.46 10 5.06 4 164.15 10 3.10 10 1.04
Numberlink 10 4 98.05 7 7.67 5 164.67 8 12.71 8 7.91
SokobanDecision 10 6 46.57 7 61.42 10 59.34 9 92.15 10 42.91

Total 130 64 133.72 81 100.50 84 82.45 99 44.75 105 52.48
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this case, since the rewriting technique is the same, the difference of performance is due
to the fact thatGLUCOSEoutperformsLP2SAT4J. The performance gap between C++
and Java implementations can be observed also by comparingWASP and JWASP. In
particular,WASP solves 18 more instances thanJWASP. The differences are noticeable
in Labyrinth whereWASP solves 9 more instances thanJWASP. Similar considerations
hold by comparingCLASP and JWASP. In fact, the former is in general faster solving
24 more instances than the latter. Finally, it is important to note thatJWASPis basically
comparable in performance withLP2GLUCOSE(the latter solves only 3 instances more
than the former). An in-depth analysis shows thatJWASP is faster in KnightTour and
MazeGeneration solving 4 and 6 instances more thanLP2GLUCOSE, respectively. On
the contrary,LP2GLUCOSE is faster thanJWASP in GraphColouring, HanoiTower, and
SokobanDecision. We observe that the main advantage ofJWASP over LP2GLUCOSE

is registered (as expected) in the benchmarks in which the well founded propagation
(implemented natively byJWASP) is applied, such as KnightTour and MazeGeneration.

5 Discussion

During recent years, ASP has obtained growing interest since efficient implementations
were available. For reason of efficiency, most of the modern ASP solver are imple-
mented in C++. To the best of our knowledge, the only previousJava-based ASP solver
wasJSMODELS[14], which is not developed anymore.JSMODELSwas based onSMOD-
ELS featuring the DPLL algorithm and lookahead heuristics. From an abstract point of
view, JWASPis more similar to modern ASP solvers, likeWASP [2, 3] andCLASP [11].
In fact, all the three solvers are based on CDCL algorithm andsource pointers for the
computation of unfounded sets. However,JWASPis implemented in Java and thus it is a
cross-platform and more portable implementation. An alternative to the development of
a native solver is to rewrite the input program into a CNF formula, as done by the family
of solversLP2SAT [13]. This alternative approach can be applied to obtain a Java-based
solver by endowingLP2SAT with a Java-based SAT solver such asSAT4J. This ap-
proach is less efficient thanJWASPin the experimental analysis reported in this paper. It
is worth noting that, bothJWASPandLP2SAT apply the Clark’s completion [17]. Thus,
the main difference betweenJWASPandLP2SAT4J consists of the native computation
of unfounded set ofJWASP, which is obtained by using an algorithm based on source
pointers introduced bySMODELS [23].

In this paper we reported on the new Java-based ASP solverJWASP built on the
top of the SAT solverSAT4J. The new solver was compared with both C++ and Java-
based approaches. In our experiment,JWASP outperforms the Java-based alternative
LP2SAT4J, and it is competitive withLP2GLUCOSE. However, as expected,JWASPis in
general slower than the native solvers. This confirms that C++ implementations are usu-
ally much faster than Java-based approaches as also noted in[15]. Future work concerns
the extension ofJWASPfor handling optimization constructs and cautious reasoning.
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