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ABSTRACT
In this paper BrailleIO, a small .NET framework for de-
veloping two-dimensional tactile applications, is presented.
It offers general features for displaying tactile information
and for interaction. BrailleIO includes hardware abstrac-
tion, window and visualization features as well as basic inter-
action functions, such as panning and zooming on different
content types. Information visualization can be organized in
several independent screens that can be divided into multiple
areas, having a full box model. Interaction can be realized
via hardware keys of the used device or by basic gestures if
the device is touch-sensitive.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—classes and objects, data types and struc-
tures, frameworks; H.5.2 [Information Interfaces and

Presentation]: User Interfaces—haptic I/O, input devices
and strategies, Screen design, User interface management
systems (UIMS); K.4.2 [Computers and Society]: Social
Issues—assistive technologies for persons with disabilities

General Terms
Documentation, Design

Keywords
Framework, tactile display, two-dimensional Braille display,
pin-matrix device, hardware abstraction, standardization,
tactile interaction, software development, tactile user inter-
face

1. INTRODUCTION
Information technology is omnipresent in our daily life and
we accept that because of so many benefits. With the in-
creasing possibilities of information technology and the de-
vices available everywhere getting more powerful, presenta-
tion of data can get even more user friendly. In our visual
world this means that rich applications and big data get
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more and more visual to expose their secrets. This way, in
addition to purely text-based systems interactive visual and
graphical user interfaces pose a big benefit for the most users
but leave also some behind.

Visually impaired users rely on a substituting alternative
way to receive the information that is presented in a visual
way. This mostly includes spatial information, too. While
the visual world is entering the third dimension in informa-
tion presentation now, visually impaired people are getting
access to the second digital dimension with the help of the
arisen smart mobile devices with touch screens. These are
well usable tools for easy and self-determined interaction.
But that is only audible in most cases. The step to a real
tactile and, therefore, graphical interaction is still underrep-
resented.

Because of so much graphical information, the growing re-
quest for two-dimensional dynamic tactile displays for blind
computer users results in an increasing number of available
ideas and products. Several different designs and techniques
for refreshable tactile displays exist.

Many prototypes for building tactile displays were devel-
oped, using different ideas to generate a dynamic tactile dis-
play [11, 12, 15]. Different approaches were used to gener-
ate tactile stimuli and arrange them in matrixes with more
or less resolution. The techniques range from mechanical,
electromagnetic, piezoelectric, or pneumatics, hydraulic or
shape memory alloy based actuators up to surface changing
polymers [8].

There are not only prototypes already available. Completely
functional systems built for solving application-specific prob-
lems are available. The Mimizu system, using the DotView-
Pin-Display [5], is a stylus-pen based drawing workstation.
The pin display consists of 1,536 pins in a 48 x 32 pin-matrix
with inter-pin space of about 3 mm and a display size of 144
by 96 mm. The application allows for painting and erasing
freehand structures or the presentation of small images.

With the GWP system [1], a small pin-matrix display of 16 x
24 dots is used. The pin-matrix has a 3 mm pin raster, too.
The device is portable and has 15 function keys, allowing
for zooming, navigation and function calling. The GWP
device is used to give access to mathematics, especially to
the graphical part.



Within the HyperBraille project the touch-sensitive device
called BrailleDis was developed. Two generations of pin-
matrix devices exist, varying in body dimensions, amount
of function keys and touch sensor resolution [13, 6]. The
BrailleDis devices have a ten dpi dot matrix of 60 x 120
pins, resulting in a tactile area of 150 by 300 mm with 7,200
pins. The HyperReader software [10], using the BrailleDis
devices for in- and output, was built to get access to desktop
applications, such as office or web browsers on Windows sys-
tems. Thereby it offers different views on the content while
keeping spatial layout information [9]. Within the Hyper-
Reader a region concept for tactile user interfaces is used
and evaluated as a well usable tool for structuring informa-
tion [7]. The architecture of the HyperReader software is
built to enable extensions and adaptations for different ap-
plications. The software framework is big and hard to learn.
Furthermore, it is not free to use and cannot address other
tactile displays for in- or output.

As mentioned before, those products are often delivered with
their own proprietary software to visualize or retrieve in-
formation. Developing a new software product, addressing
those output devices, is a time-consuming and expensive
task. It could be hard for an application developer to con-
vey information through the original software on the output
device that is not related to the original purpose the system
was built for.

In the following the framework BrailleIO is presented. Its
goal is to lower the obstacles and simplify the start for de-
veloping applications for two-dimensional tactile displays by
giving basic tools for tactile user interface design and hard-
ware modeling.

2. THE FRAMEWORK
To reduce time and costs for developing a software applica-
tion that uses a tactile display as output device, the frame-
work BrailleIO is developed. It is a .NET 4 based software
framework written in C# and, therefore, only usable for Win-
dows operating systems.

A main goal of BrailleIO is to give basic implementations
for common needed functions and structures when building
a tactile application. The barrier to enter should be as low
as possible. The framework enables developers to achieve
quick success without starting to solve fundamental prob-
lems in the first place. The framework should give possi-
bilities for structuring information, presenting graphics and
text - preferably as Braille - and enable interaction.

Successfully tested concepts, proven in previous projects [9,
7], are used to build tactile user interfaces and bring them to
a wider field of users. The reuse of those concepts can help
to improve quality of tactile applications and can start to
bring consistency in structure as well as in look and feel of
such applications. Consistency is important, especially for
visually impaired users, because the user can rely on known
structures and interaction paradigms [2]. This can improve
learnability as well as efficiency and can reduce errors at the
same time.

Therefore, it seems to be necessary to idealize and abstract
the used hardware for input and output as well. This means,
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Figure 1. Basic structure of BrailleIO.

application developers can use basic features without any
knowledge of the used device or get access to required infor-
mation through the framework.

2.1 General Overview - Structure
The framework is divided into two main parts. The first
part handles basic graphical elements and the generating of
output. The second is responsible for managing, modeling
and implementing the real used hardware devices. As shown
in Figure 1, the two parts are linked together by a so-called
mediator (BrailleIOMediator). The mediator handles the
visibility and the rendering of the tactile user interface by
managing different views which are building together the
resulting tactile output. Every important part of the frame-
work should be accessible through this component.

All modeled hardware devices - called adapters - have to
be registered to the mediator. It distributes the generated
tactile output to all registered and activated devices. The
access to interaction events caused by user interaction with
a device is not handled by the mediator. An interaction
handling process has to be connected directly to every sin-
gle registered adapter, which can be accessed through the
mediator.

2.2 Tactile User Interface
The framework offers elements to build and structure tac-
tile graphical user interfaces. The basic object for that is
the so-called screen (BrailleIOScreen). As shown in Fig-
ure 1, a BrailleIOMediator can hold an unlimited set of
screens. Normally, only one screen should be active at once
and, therefore, will be rendered and sent to the displaying
device. With this multiple screen metaphor it is possible
to implement and provide several different views or appli-
cations simultaneously. The user can then switch easily be-
tween the different screens. A screen itself cannot have any
content directly.

screensview-range

ViewBox

content

Figure 2. Screens and view-ranges.
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Figure 3. Box model of view-range and relation to

ViewBox.

As the arrangement of a two-dimensional tactile output into
several regions can support the bi-manual exploration of
information [9], the framework should allow this feature,
too. Therefore, screens can be divided into several content
areas (see Figure 2). Those areas are called view-ranges
(BrailleIOViewRange). A screen consists of an unlimited
number of view-ranges (see Figure 1). Every view-range can
be independently filled with content, placed on the screen,
sized, activated or deactivated.

The view-ranges are stored at the corresponding screen in
an internal list in the order they were added. This list repre-
sents a hierarchical, linear structure that has direct influence
on the rendering process. The position inside the list cor-
responds to a common z-index mechanism. This means an
overlapping view-range in a further position inside the list
overwrites an overlapped view of an earlier position. In ad-
dition, the definition of a layer order, not corresponding to
the list order, is also possible by setting the z-index property
for the view-ranges. View-ranges are always opaque. That
means the underlying content will be erased by an overlap-
ping container, even if it is empty.

View-ranges have a full box model corresponding to the CSS
box model for web sites [14] (see Figure 3). The box model
consists of padding (space between content and border), a
border and a margin (free space around the border to other
elements). Free space is defined as lowered pins which results
in a recognizable gap between elements. A part of a border
is rendered as a continuous straight vertical or horizontal
line of raised pins. Other border styles are not available
until now. A border can be used to separate elements with
a clear tactile stimuli. If a border is used, it is recommended
to set a margin and a padding as well to mark the separating
line as not related to the content. A border of one pin width
seems to be sufficient in most cases. This also saves rarely
available display space. All properties of the box model are
independently definable in all four directions.

With these tools a screen can be organized in regions with
different content which can be separated by significant tac-
tile features, such as dividing space, separating lines or mark-
ing frames. The division of the available display space seems
not always to be reasonable, especially on small displays
such as the GWP [1]. However, for displaying special, tem-
porary or non-persistent information the method of show-
ing brief overlapping view-ranges could be useful. To en-
sure that contents of different areas are not mixed together
by recognizing them as one whole content area it seems to
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Figure 4. Relation between ViewBox, ContentBox

and content of a view-range.

be necessary to mark them as divided. Therefore, the box
model can be used even if only one of its parameters is ap-
plied to create a border or a gap.

A view-range is mainly characterized by the size and the
position on a screen. These parameters are stored in the
ViewBox member variable. In the ViewBox, the outer di-
mension of the view-range is defined as well as the x and y
position in relation to the top left corner of the correspond-
ing screen. The remaining visible area of a view-range is
called ContentBox, which has the dimension of the View-

Box subtracting the several box model sections (see Figure
4). All dimensions and positions used as parameters in this
framework are defined in pins. Therefore, the definition of
sizes and points is depending on the resolution of the used
output device.

For handling oversized content and enabling the access to
content that doesn’t fit in a view-range, a panning concept
is realized. With the parameter OffsetPosition the con-
tent can be moved under the view range frame. The offset
position defines the start position of the content in relation
to the left corner of the ContentBox. If necessary, simple
tactile scrollbars are added and rendered to give feedback to
the user about the position inside the content. The scroll-
bars consist of a continuous line with an adjacent indicator
which is three points long and one point thick. To keep the
scrollbar recognizable a one pixel space in the direction of
the content is set up. Therefore, the scrollbars only reduce
the available content space by three pins.

A view-range can get several types of content to display. As
shown in Figure 5 the basic data structure, to which every
other content type will be transformed, is a two-dimensional
Boolean matrix (bool[,]). A true-value represents a raised
pin on the tactile display, a false-value a lowered one. Other
content types are text, which is rendered in Braille or as
an image, as well as pictures, which are rendered as binary
images. With a free definable threshold for the lightness of
a pixel, darker pixels will be set to raised pins and lighter
ones to lowered pins.

In the end the framework allows for setting any other type
of content. However, this requires the definition of a spe-
cialized renderer for the given content type, implementing
the IBrailleIOContentRenderer interface, converting the
content to a usable Boolean matrix.
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Figure 5. Content types for view-ranges.

Nearly all renderer are hookable. This means, an exten-
sion or an user of the framework can get access to the ren-
derer functionality by registering a hook. This hook will
be called before the renderer starts his work and after the
renderer has rendered the result. A hook has the opportu-
nity to manipulate all function parameters in the beginning
of the rendering. Furthermore, the redering result can be
modified before it will be returned and sent to the output
devices. This gives programmers the power to use already
implemented standard renderer and adapt or extent them
to their needs, without implementing an own renderer.

2.3 Device Abstraction
As mentioned before, the abstraction and modeling of hard-
ware is an essential part of the framework, too. Therefore,
the first idea was to identify basic properties and features. A
construct for modeling and mapping a real hardware inter-
face was developed. In this, special properties are defined,
for instance, a proposed image refresh rate, the number of
pin-rows and columns or the availability of buttons or touch-
sensitivity of the hardware device.

A specific hardware device still needs to be mapped to the
proposed framework. For this purpose, an adapter has to be
provided that implements the IBrailleIOAdapter interface
and generates a unique device representation as an object of
type BrailleIODevice (see Figure 6). This has to be done
once for every new hardware device that should be used with
the BrailleIO framework.

The implemented adapter is responsible to achieve proper
access to the hardware device. This means the adapter has
the task to create, open and hold a channel to the hard-
ware device as long as needed and to bring the standard-
ized output-matrix on the device. At the same time, the
adapter implementation has to map the proprietary and
device-specific interactions and events to the idealized data
models which are expected by the framework. If a device
has hardware keys, they have to be modeled, too. Nine ba-
sic function keys are defined as a minimal set for a sufficient
interaction on a touch-sensitive tactile graphic device (see
Figure 7). The key set consists of four navigation keys and
two zoom buttons to interact with oversized, graphical or
zoomable content, such as images. Furthermore, two inter-
action buttons for approval and refusal are defined. Finally,
a special key for touch-sensitive devices seems to be neces-
sary to start and stop a gesture input to avoid midas touch
effects [10].
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Figure 6. Adapter and device class structure.

Some general device events are proposed as well (see Figure
6). These events should give feedback about availability and
changes in key-, touch- or pin-states as well as the occurred
errors. In these events the sending device and the original
raw device data of the event are enclosed and sent to all
registered listeners. The listener can decide if he wants to
handle the generalized data, such as the general buttons, or
the original device data, e.g. additional keys that are not
mapped to one of the general keys.

Two real hardware-specific adapter implementations were
built for different types of the BrailleDis series, named the
BrailleDis 9000 [13] and the BrailleDis 7200 [6] (see Fig-
ure 8). In addition to the real adapter implementations,
a software adapter was developed. The so-called ShowOff
adapter can be used for debugging if no real hardware de-
vice is available or for monitoring a connected BrailleDis
device. It implements the IBrailleIOAdapter interface and
can be used as a standalone input or output device for ap-
plications based on the framework. It is inspired by the
BrailleDis 7200 device and can be used as emulator. With
the simulator it is also possible to enter single touch inputs
by mouse.

2.4 Interaction
A set of basic functions for interaction are implemented. As
mentioned before, a first assignment of keys with functions is
proposed by the adapter implementation (see section 2.3),
but not realized by the framework. The linking between
buttons and functions has to be done by the application
developer. Nevertheless, all necessary functions are available
in a basic implementation.

OK

ESC

GST

-

+

device

IBrailleIOAdapter

Figure 7. General device model with nine keys.
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Zooming can be realized by setting the zoom property of
the corresponding view-range. The framework will handle
the zoomed rendering if possible. Panning operations can
be connected to the OffsetPosition property of a view-
range (see section 2.2). By setting the offsets to negative
values the content can be moved below the visible area of
the view-range’s ViewBox (see Figure 4). Changing the y-
offset realizes a vertical and changing the x-value a hori-
zontal scrolling. The offset can be changed freely. Several
functions of the abstract base class implementation of the
view-ranges (see Figure 1) offer offset manipulation in an
easy manner.

A basic gesture recognizer is included. It recognizes a num-
ber of basic gestures, such as pointing gestures (tab), swipes
(line), pinch, circle (half and full) and three finger drag op-
erations (compare [7]). All gestures are interpreted and
returned with further information, such as start and end
point, direction or orientation. In addition, a timestamp
fingerprint allows for the inference on the duration, speed or
temporary order of interactions.

Inversion and threshold adaption are also part of the frame-
work for image handling. For instance, these features are
useful for exploring images. Small sinks - regions of low-
ered pins inside an area of raised pins - can be transformed
to a raised pin area for a better detection by inverting the
presentation. The adaptation of the threshold level for the
binary image conversion allows for adjusting the presenta-
tion to the given context. Especially if very light or very
dark images are presented, the adjustment of the threshold
is necessary to make structures visible at all.

2.5 Usage
In the following a small guidance about how to set up a
project with the BrailleIO framework in a few steps is given
(compare Figure 9).
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Figure 9. Steps to set up a project with BrailleIO.

After setting up the device that should be used for in- and
output, it has to be registered to the AdapterManager related
to the BrailleIOMediator. A registration to the events
thrown by the device has to be done. If the device is touch
sensitive, the optional basic gesture recognizer can be con-
nected to interpret touch inputs. An unlimited number of
devices can be registered but only one device can be marked
as active. This device is used as main output. Other de-
vices can be used as output by setting the Synch property of
the AbstractBrailleIOAdapterBase. This leads the medi-
ator to mirror the tactile result to these devices. With this
mechanism the ShowOff adapter can be used, for example,
as debug monitor beside a real tactile matrix device.

At least one view-range has to be defined for displaying con-
tent. It has to be configured with a position, size and the
optional box model. The view-range can be added to the
mediator directly or it can be combined with other view-
ranges in a screen which has to be added to the mediator.
An unlimited amount of screens are allowed. After setting a
screen as active or visible it will be displayed on the output
device. Every view-range has to get its own content which
will be rendered and presented. The views or the contents
can be changed, for example, on user interactions reported
from the device events.

3. CONCLUSION AND OUTLOOK
The framework BrailleIO was presented. It enables a fast
and easy entry into building applications on two-dimensional
tactile displays for visually impaired users. With the screen
and view-range constructs a proper information organiza-
tion and simultaneous reception is possible. The framework
also proposes a hardware abstraction for pin-matrix devices
including general hardware keys and function binding.

The framework is used, for example, as groundwork for a tac-
tile graphic production workstation called Tangram worksta-
tion [3]. This project enables collaborative work of a sighted
and a blind user on one graphic.



Several open issues have to be solved and innumerable im-
provements are conceivable. At this point, there is no way
to map infinite further hardware keys to the generic key con-
struct. A continuous numbering of further keys could be a
solution to overcome the fall back to the proprietary nam-
ing of these buttons. In this context, the implementation of
more concrete hardware adapters would proof the concepts
and the portability beyond the BrailleDis devices.

It is also unclear how to handle output devices with a sig-
nificantly higher resolution than 10 dpi, which will lead to
problems on rendering Braille. The resolution of an used
device is available in his specifications and therefore has to
be checked and used while rendering resolution dependent
content.

The next big and challenging step is the implementation
of a powerful Braille renderer. Currently, strings are ren-
dered with an equidistant Braille font as an image and sent
to the output devices. There is no way back from the ren-
dered image to the original given text. This is necessary, for
example, for a controlled audio output of touched Braille
elements. For the near future, it is planned to build a ren-
derer based on the free transcoding project liblouis [4]. This
should allow to take HTML strings as input which can be
adapted with cascading style sheets.

BrailleIO is realized as open source project. One big ad-
vantage is, if some functions or concepts are missing or are
not optimal, the open source approach enables anybody to
take part and improve, change or complete the project with
further and better ideas. The framework is freely available
through https://github.com/TUD-INF-IAI-MCI/BrailleIO.
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