
An Architecture for Approximate Real-Time Query
Optimization and Processing ∗

Anna Yarygina Boris Novikov

Saint-Petersburg University
anya safonova@mail.ru, b.novikov@spbu.ru

Abstract
High-level declarative scripting languages are
considered to be an effective tool for speci-
fication and execution of complex analytical
data processing scenarios as they can hide the
complexity of underlying heterogeneous pro-
cessing environment. A growing demand to
process huge amounts of data under real-time
requirements as well as advanced similarity-
based models raises the need in approximate
processing.
We discuss architecture of an extendable system
for optimization and execution of approximate
complex queries formulated in similarity-based
declarative query language.

1 Introduction
Complex querying scenarios appear in various data inte-
gration and processing tasks. Several different informa-
tion resources, such as databases, semi-structured data,
streams, and uncertain data might be needed in the same
data processing workflow. The systems might be het-
erogeneous in terms of data model, dynamics, trustful-
ness, and content type, as well as querying or retrieval
paradigms. The need to combine data extracted from het-
erogeneous resources potentially based on diverse query-
ing paradigms appears in several application contexts
and application areas, including advanced search, per-
sonalization, and analytical processing.

Specifications of complex analytical scenarios can be
effectively expressed in high-level declarative scripting
languages hiding the complexity of underlying process-
ing environment.

The systems integrating these ideas usually exploit in-
termediate algebraic languages which in addition to com-
mon features of query languages, such as filtering, set-
theoretic operations, and joins incorporate their fuzzy
extensions and complex processing techniques such as
NLP, mining, and analytics.

1.1 Problem Statement

Any complex data workflow processing based on simi-
larity or other uncertain querying model tends to be com-

∗ This work was partially supported by HP Labs under contract
No. CW317234.

Proceedings of the Ninth Spring Researcher’s Colloquium
on Database and Information Systems, Kazan, Russia, 2013

putationally heavy. The expectation is that a declarative
algebraic approach to query evaluation over diverse set
of information resources enabling query optimization is
capable to address this performance issue.

Query optimization techniques for such context differ
from relational due to significant differences in algebraic
properties and cost models for extended similarity-based
operations.

The uncertain nature of the queries implies a need in
approximate query evaluation because in such context
exact query evaluation sometimes is not reasonable or
meaningful.

The approximate algorithms implementing operations
of the algebra in combination with traditional exact query
evaluation can be applied to reduce the query evalua-
tion time. Some algorithms may produce different qual-
ity of the output depending on the amount of resources
allocated for execution. This leads to the analysis of
speed/quality trade-offs in the context of query optimiza-
tion and evaluation.

The problem of traditional query optimization,
namely “find an execution plan with the minimal cost” is
replaced with either “find the best plan yielding at least
specified quality”, or “provide the best possible quality
for at most given amount of resources”.

We have to maximize the quality having the limited
resources for query evaluation. Thus, compared to tra-
ditional query optimization the system incorporates the
resource allocation step in the whole query evaluation
pipeline.

Our primary objective is to build an architecture
which is able to process complex data processing work-
flows in real-time, that is ensure predictable response
time controlling approximate evaluation.

1.2 Querying Examples

The example from model implementation is based on
data from OpinRank dataset with judgments. The dataset
contains hotels from 10 cities over the world. For each
hotel its name, address, and scores on cleanliness, room,
service, etc. are available.

Let us consider a query: find best 10 hotels in London
according to service and cleanliness. The query is formu-
lated in terms of high-level declarative query language
similar to one proposed in [8] and then is translated into
expression in terms of algebraic operations (query eval-
uation plan) shown in figure 1(a).

In this work we further do not distinguish operation



and algorithm its implementing because most modules
in the architecture process algorithms rather than logic
operations.

The primary operations retrieve hotels with scores
from primary sources based on provided score types.
Subsequent top operations are applied to reduce the num-
ber of objects for further analysis. The next price filter
retrieves the price for double room for specific date. The
city filter keeps only hotels in London. The fusion oper-
ation combines scores for hotels based on provided rule.
Finally, top operation is applied to retrieve only 10 best
hotels according to new input scores.

(a) Example query evaluation plan

(b) Alternative query evaluation plan

(c) Approximate query evaluation plan

Figure 1: Example scenario

One may see that there are several opportunities for
optimization. For example, we can swap unary opera-
tions. The system also supports implementation of fu-
sion operation which simultaneously retrieves best ob-
jects and integrated implementation of primary operation
and city filter.

Figure 1(b) demonstrates how the query evaluation
plan can be transformed (not necessarily making it op-
timal).

The quality of the query evaluation result depends on
the amount of time specified by the user.

Thus, as soon as the query optimization step produces
a reasonably good query evaluation plan the system has
to distribute fixed amount of resources specified by the
user. Figure 1(c) shows some query evaluation plan
with operations admitting approximate implementation
marked by dashed borders. Approximate algorithms for
them and corresponding cost models are described in de-
tails in [13].

1.3 Analytics Example

Let us suppose that we analyze social sources (such as
ratings from retailer web site and customer tweets) to
find out how customer satisfaction depends on price, for
each product group. Thus, we probably formulate the
following query: count average values of ratings from
retailer and from sentiments, grouped by price range, for
each product group. The corresponding query evaluation
plan is shown in figure 2 with the following description

of nodes:

1: group by PriceRange
nest (ProdGroup, avg(Rating),avg(Sent))

2; group join on ProductModel
3: group join on ProductModel
4: get database product table
5: get retailer ratings for products
6: get sentiments from tweets for products

(a) Possible resource allocation (b) Another resource allocation

Figure 2: Analytics example

Let us as well suppose that external primary sources
produce results as output streams of objects with dif-
ferent speed: 500 objects per second for retailer ratings
and 300 objects per second for sentiments extracted from
tweets. As the data sources are actually (potentially un-
limited) streams, an exact evaluation is impossible. We
assume that an approximate result is expected in at most
230 ms. This implies an ultimate need in approximate
evaluation which restricts the quantity of data items pro-
cessed by each of operations.

The limited amount of resources can be distributed
among operations in the plan in different ways shown
in figures 2(a), 2(b). One may see that the resource al-
location strategy shown in figure 2(b) is preferable be-
cause we do not retrieve excessive tweets when have not
enough retailer ratings.

1.4 Contributions

We propose an architecture for an extendable system
for optimization and execution of approximate complex
queries formulated in similarity-based declarative query
language. Based on the proposed architecture we demon-
strate the integration of techniques proposed in previous
research and connect together several parts: similarity-
based algebra, extended cost/quality models, and re-
source allocation techniques. We provide the detailed
discussion of several aspects of the architecture focusing
on its extensibility.

The rest of the paper is structured as follows. Sec-
tion 2 describes the architecture including underlying
data model, intermediate algebraic query language, and
main modules. The architecture details on specific mod-
ules are followed by a detailed discussion of classes of
operations from the system extensibility point of view in
section 3. Section 4 outlines the related work.

2 The Architecture
This section outlines high-level architecture of a middle-
ware query processing system acting on top of existing
query evaluation and data processing systems, and below



some user interface for query formulation and results ex-
ploration.

The system supports different types of data sources
and applies the uniform representation of different types
of data to enable their integration in one query. This re-
sults in a compromise between uniform integration of
different types of sources and processing units and ne-
cessity to control the query correctness and validity at
the query formulation step.

2.1 The Language and Data Model

The central concept of our model is a q-set defined in
[23] as a tripe (q,B,S) where

• q is a query (no matter how represented),

• B is a base set of objects,

• S is a scoring function for objects in B.

Actually q-sets are represented as sets of objects with
scores indicating relevance of object to the underlying
query.

The algebra on q-sets is characterized in [23] and in-
cludes extended relational operations taking q-sets as in-
put arguments and return q-sets as results as well. Op-
erations can be configured with different parameters, for
example top k operation has parameter representing the
number of objects to be returned; selection filter may
have parameter with selection predicate; and primary
operation extracting q-set from database is configured
with a SQL query.

2.2 Query Optimization and Execution

Query processing engine contains modules shown in fig-
ure 3: parser, optimizer which interacts with transforma-
tions and cost models, resource allocation module which
is based on quality models, and executor.

Figure 3: Model Implementation architecture

2.2.1 Parsing

The parser translates a query into the initial query evalu-
ation plan that is the query tree with algebraic operations.

The initial query is supposed to be formulated in some
high-level language: extension of SQL similar to one
proposed in [8] or some graphic one. In this work we fo-
cus on intermediate level and essential part of query eval-
uation is processed on the algebraic level. In our model

implementation the initial query is represented by XML
tree with nodes and attributes describing operations and
parameters.

2.2.2 Optimization

The optimizer in query evaluation system in the de-
scribed environment should be adaptive and distensible.

Similar to the traditional optimization of relational
queries the optimizer has to analyze the algebraic proper-
ties of underlying operations. The associativity and dis-
tributive properties enable the rewriter to form the space
of query plans based on the transformations of the query
tree.

We have to support algebra extensibility and develop
optimizer tunable to new specific operations which may
possess new algebraic equivalences and expand the space
of possible query plans.

The optimizer is based on extensible and tunable set
of possible transformations of the query representing
the space of query evaluation plans. It is important to
note that in the proposed architecture the set of trans-
formations includes all possible reorganizations of the
query evaluation (sub) plan: based on algebraic equiv-
alencies or different implementations of algebraic opera-
tions. This fact enables an easy way to introduce new op-
erations, algorithms, and corresponding transformations.

In comparison with traditional relational data bases
the space of transformations is not as homogeneous as in
extended algebra: for example, non-associative joins and
complex transformations with top k operation are there.

A special attention on the implementation of trans-
formations in the system is needed because of its ex-
tensibility: the space of transformations should not be
deeply coded in the optimizer, thus uniform interfaces
are needed to make transformations easily pluggable in.

Any high-quality optimizer should be cost-based,
hence cost models for all operations should be provided,
including user-defined extensions. In order to be able
to select a good query evaluation plan the optimizer for
complex query processing should be constructed based
on cost models of operations in the queries. The archi-
tecture should support an integration of new cost mod-
els for operations and tuning of existing ones. The cost
models are supposed to be tunable and adaptive, that is,
be able to use data statistics when available.

In the model implementation an optimizer is based on
limited descent by plan cost.

Further the adaptive query optimization technique
[12] should be integrated into the system, as it compen-
sate for the lack of statistics inherent for heterogeneous
environment, especially with user-defined operations.

2.2.3 Resource Allocation

The architecture supports the class of approximate algo-
rithms with the following properties:

• with controllable quality (allocated resources define
the quality of result);

• with fixable parameters (the fixed amount of allo-
cated resources is transferred into fixed operation
call parameters).



The restricted class of supported approximate algo-
rithms contains quite large number of specific algo-
rithms: for example, an approximate algorithm for ag-
gregation operation proposed in [29], approximate join
algorithms discussed in [6], or any algorithm based on
sampling.

Approximate algorithms with fixable parameters
should be distinguished from any-time techniques when
user is able to stop operation evaluation based on esti-
mations of already achieved result quality, for example
proposed in [4, 14].

Approximate pre-configurable algorithms are more
restrictive as the estimation of result quality should be
done in advance. On the other hand, this property is less
restrictive as there is no need to support correct approxi-
mate result of operation evaluation at any time of execu-
tion.

As the focus of this work is on the approximate query
evaluation the cost models are extended with the no-
tion of quality and form the quality models for algebraic
operations. Few examples of such extended cost mod-
els are presented in [13]. Quality models describe the
speed/quality trade-off for approximate algorithms that
is, the models show how the result quality depends on
the amount of resources allocated for operation process-
ing. In model implementation only simple non-adaptable
cost and quality models are implemented.

Although the semantics of data quality is com-
plex [21] and may be considered in several dimensions,
we assume that the quality of a data set is estimated with
a single numeric value. For example, the quality of an av-
erage value might be based on its accuracy, and a larger
size of sample is more expensive but, in general, provides
better quality. In other case we can assume that the re-
sult quality of approximate aggregation operation based
on sampling can be estimated as relative sample size.

It is important to note that cost/quality models are
based on relative operation quality. Let us consider unary
operation which receives input data with absolute qual-
ity ain. Even the best possible implementation of op-
eration may reduce the quality of the result data aout.
Thus, the quality of operation equals aout

ain
. If the opera-

tion receives the unlimited resources for the fixed input
data it produces data with the best feasible absolute qual-
ity aout(∞). If it receives amount of resources t, which
is less than needed for the best quality, the absolute qual-
ity of its output is aout(t); thus, the relative quality of
operation is aout(t)

aout(∞) .

Another concept essential for our extended cost/qual-
ity models is a resource. Different types of resources
may be used to restrict the query execution, some of
them, like CPU time, CPU cycles, and I/O, depend
mostly on the complexity of the plan, while others like
memory size or elapsed time may also depend on avail-
able configuration (e.g. number of processors allocated
for the query).To treat all kinds of resources uniformly,
we consider configuration to be a part of the plan.

In this work the amount of resources is expressed with
single numeric value. This value may represent either
the most important type of resources, e.g. elapsed time
for real-time requirements, or a combination of different
resource types.

In order to construct the query evaluation plan which
operates in the limited amount of time and provides
the best possible quality the resource allocation mod-
ule should interact with the optimizer. The optimization
problem for approximate query evaluation seems to be
much harder than commonly known exact query opti-
mization: in addition to selection of one of equivalent
execution plans, the optimizer has to distribute available
processing resources between operations of the query ex-
ecution plan.

Model implementation uses an approximate solution
described and analyzed in [32]: the limited amount of
resources is allocated to the best execution plan for un-
limited resource yielding the best possible quality. The
rationale is separation of resource allocator from an op-
timizer, enabling the use of any of well-known optimiza-
tion techniques.

Obviously, the above solution may result in sub-
optimal plan. For example, approximate evaluation of
operations may limit the cardinality of intermediate re-
sults making the selected query evaluation plan ineffi-
cient. Another limitation is in the inability to support
approximate algorithms implementing operations with-
out controllable quality but still relevant for approximate
real-time query evaluation. An integrated implementa-
tion of an optimizer and resource allocator is planned for
future work.

2.2.4 Execution

The executor is based on commonly accepted pipeline
query evaluation augmented with provisions for ex-
tendibility. Thus intermediate results of evaluation are
transferred between operations without materialization;
however, some implementations of specific operation
still may materialize intermediate results internally.

The set of operations can be extended by other generic
or user operations; new exact and approximate algo-
rithms implementing operations also can be smoothly
introduced to the system together with new algebraic
equivalences and cost/quality models.

3 Detailed Discussion
The main requirements to the system are extensibility
and approximation, thus we should take them into ac-
count in the system architecture.

3.1 Transformations

A notable feature of the environment in consideration is
the need to provide for configurable transformations, in
contrast with usually hard-coded transformations for re-
lational optimizers.

Transformations are described in the system by 2
functions and are registered in the list of available trans-
formations.

• Check function which evaluates the applicability of
transformation to the root of the query evaluation
(sub) plan.

• Apply function which constructs a new query evalu-
ation (sub) plan from input one applying the trans-
formation.



The system has base implementation of some uni-
versal query transformations such as algorithm change
transformation and distributive property. This enables
easy implementation of additional transformations just
configuring base ones.

3.2 Cost Models

As any effective query optimization is based on cost
models of operations the system should support user-
defined cost models for operations to be able to improve
applied cost models for basic operations and add new
ones for extensions.

A cost model is a function with the following inter-
face:

Input: Operation call parameters; input data statistics.

Output: Operation cost; output data statistics.

3.3 Quality Models

At the resource allocation step the system applies qual-
ity models which describe the trade-off between cost of
operation execution and quality of result for approximate
algorithms.

A quality model is a function with the following pa-
rameters:

Input: Input data statistics; non-changeable operation
call parameters.

Output: Piecewise-linear representation of dependence
between resources allocated for operation execution
and result quality.

In addition, a function mapping allocated resources
and quality into operation parameters is needed for cor-
rect work of the system. This function returns operation
call parameters based on specified operation execution
conditions (resources, quality or both):

Input: Input data statistics; non-changeable operation
call parameters; resources allocated for operation
execution; expected operation result quality.

Output: Operation call parameters.

3.4 Operations

Discussion of operation library is followed by architec-
ture details for specific classes of operations: primary,
unary, and binary focusing on algebra extensibility.

3.4.1 Operation Library

Operation library stores the set of algebraic operations
and all attendant structures. For each operation the li-
brary stores the following:

• Mapping of operation call in the query evaluation
plan into the direct call;

• Cost model;

• Quality model;

• Relevant transformations using the operation.

Each algorithm, for example join based on nested
loops or sort merge, is registered in the operation library
as a separate operation. To add new operation to the op-
eration library one should register the corresponding cost
model, quality model, and transformations.

From the architecture point of view the set of alge-
braic operations can be divided into: primary operations,
unary operations, binary operations.

During the algebra extension operations from all these
groups can be implemented supporting predefined inter-
face discussed below or constructed based on universal
basic implementations for each class.

Parameters of data processors and functions used to
configure basic implementations are passed from opera-
tion parameters: map of parameter names into values. In
this case the interface of basic implementation is univer-
sal to some extent and different data processors can work
with different sets of specific parameters.

All operations support the following interface:

Input: Operation call parameters, pipelined argu-
ment(s)

Output: Pipelined output

The number of arguments depends, of course, on the
arity of the operation.

3.4.2 Primary Operations

Primary sources of data are implemented as operations
without input arguments.

For example, if the primary source is a database, it is
implemented as an operation with input parameters rep-
resenting SQL query to retrieve data and data needed to
setup the connection.

A built-in basic implementation of primary operation
is provided. It can be configured by data retrieval proces-
sor to construct different real primary operations.

Data retrieval processor returns an object from data
set for each call until all data is returned. Basic imple-
mentation of primary operation calls data retrieval pro-
cessor while the latter returns objects and transfer col-
lected objects to the output pipe. To extend the algebra
by new primary operation one may implement a data re-
trieval processor and register it in the system. After that
a new primary operation may be implemented as basic
primary operation configured by new data retrieval pro-
cessor can be registered in the operation library.

3.4.3 Unary Operations

The architecture supports the basic implementation of
the unary operation which can be configured by unary
data processor. Basic implementation of unary opera-
tion reads objects from input pipe one by one, asyn-
chronously calls unary data processor, and when results
of processing are available it forwards objects to the out-
put pipe.

Unary data processor implements 2 methods: put ob-
ject, get object. Put method retrieves object and pro-
cesses it in specific way, for example adds new attribute
or inserts object into the internal list of object sorted by
score. Get method returns the results of processing (ob-
jects) one by one if they are available in the moment of
method call.



Let us consider the architecture of unary operation
based on aggregation. Aggregation process can be im-
plemented as 4 unary operations:

• grouping operation which defines how objects are
grouped, that is adds group label to each object;

• aggregating operation, which constructs objects
representing groups based on input objects with
group labels;

• group score calculation operation, which retrieves
input objects representing groups and returns them
with scores calculated based on specific rule;

• aggregate calculation operation, which retrieves in-
put objects representing groups and returns them
with additional attribute (aggregate) calculated
based on group of objects, for example sum on some
attribute.

All these operations can be implemented using the ba-
sic one configured by corresponding unary data proces-
sors.

3.4.4 Binary Operations

Binary operations retrieve objects from 2 input pipes and
return result objects when possible to the output pipe.

The system architecture supports the basic implemen-
tation of the binary operation based on construction of
cross product of operation arguments. Basic implemen-
tation is configured by predicate function which takes
two objects as arguments and returns the object con-
structed based on input pair of objects with correspond-
ing score. Basic implementation of binary operation
reads objects from input pipes, calls predicate function,
and puts to the output pipe new objects with scores from
predicate function.

Thus the extensibility of algebra by new binary op-
erations can be based on implementation of new predi-
cate functions. It is important to note that basic config-
urable predicate implementations can be applied: pred-
icate function comparing attribute value with constant
takes attribute name, constant value, and sing of com-
parison as parameters.

New binary operations can be implemented without
predicate function supporting interface used by basic im-
plementation. It is especially important in case of im-
plementation of approximate algorithms for binary op-
erations. One can extend the core of the system with
other configurable basic implementations of binary oper-
ation, for example approximate algorithms based on par-
tial consideration of cross product pairs.

4 Related Work
A comprehensive discussion of the related work can be
found in [31]. However, some main works should be
outlined there make the presentation consistent.

4.1 Systems

Several data processing systems are developed to pro-
cess Big Data [3, 7, 11]. High-level declarative querying

languages were proposed [24, 30] to decrease the com-
plexity of data processing workflows specification and
benefit from query optimization.

The system for optimization and procession of com-
plex analytical workflows is discussed in [10, 28].

System for approximate evaluation of SQL aggrega-
tion queries is proposed in [2]. Approximate queries can
be annotated with either an error bound, or a time con-
straint, based on which the system selects an appropri-
ate sample to evaluate the query. In [27] authors devel-
oped a framework for data exploration based on approx-
imately evaluated SQL queries that gives precise control
over runtime and quality of result. The proposed system
is based on data samples, called impressions, selected to
produce low statistical error of a query evaluation result
within strict time bounds.

Systems presented in [2,27] enable evaluation of spe-
cific classes of queries in limited resources and focus on
approximate query execution based on sampling. The
aim of the architecture proposed in this research is to
support different types of approximate real-time data an-
alytics in uniform way.

4.2 Extended Models

Traditional data querying means are reconsidered and ex-
tended because of variety of data under processing. Pro-
posed declarative querying languages are mostly the ex-
tensions of relational algebra [1, 18, 22, 26] and support
new approaches to data mining, for example based on
similarity and probabilistic models. This fact enables
their natural integration into traditional relational data
management systems and application of some known
query optimization techniques.

Some extensions of querying languages are based on
extension of relational data model: attribute represent-
ing rank or score of object is marked out from the set of
attributes [1, 9, 22].

Based on the extended data model new algebraic op-
erations can be introduced. Several types of querying
language extension can be outlined:

• languages supporting user-defined weights repre-
senting the importance of data source or sub-query
[22, 26];

• extensions of relational algebra [22] based on no-
tion of fussy sets with fixed interpretation of object
scores (scores of tuple represents the degree of its
membership in relation);

• specific algebras processing fixed type of data, for
example images [5, 8].

The ideas and approaches for querying systems with
different data processing paradigms, such as relational
database and information retrieval in collection of docu-
ments, were considered in [9].

4.3 Query Optimization

A brief overview of classical query optimization tech-
niques can be found in [17]. The optimization tech-
niques for distributed heterogeneous systems are dis-
cussed in [16, 25]. The query optimization to generate



efficient distributed query execution plans for MapRe-
duce workflows were proposed in [20].

4.3.1 Algebraic Equivalencies

Extended querying languages usually constrain the
optimization because underlying open and extensible
similarity-based algebras support less amount of alge-
braic equivalencies compared to relational algebra [9].
For example, extended operations changing object scores
do not commute with sorting operation.

Authors of [9] proposed 2 alternative ways of exten-
sion of the set of equivalent query evaluation plans trans-
formations: based on special limitations on underlying
algebra or support of approximate algebraic equivalen-
cies.

Extended querying languages support some algebraic
equivalencies considered in [1, 22]. For example, au-
thors of [22] discuss exact transformation of algebraic
expression with join and following selection by thresh-
old on score value into the equivalent one with prelimi-
nary selection. Such algebraic equivalencies demonstrate
that the set of possible query transformation have not de-
creased but have changed.

4.3.2 Cost Models

The development of cost models is base for optimiza-
tion of queries specified in extended high-level language
[1,18]. The cost models for specific extended operations
and corresponding algorithms should be constructed and
analyzed. The technique for estimation of operation eval-
uation result based on sampling is proposed in [18]. Cost
models based on selectivity estimation of extended oper-
ations are developed in [1].

Authors of [15] proposed system fully integrating
rank-join operation into relational database. The prob-
abilistic model to estimate the size of input arguments
for rank-join operation and corresponding cost model are
developed in [15].

4.4 Positioning

The proposed system architecture is based on the au-
thors previous research and connects together several
parts: similarity-based algebra [23], extended cost/qual-
ity models [13], resource allocation approach [32]. The
detailed discussion of some separate ideas, concepts, and
techniques relevant for implementation of extendable
system for optimization and execution of approximate
complex queries formulated in similarity-based declara-
tive query language was presented and model implemen-
tation was developed to check them. In this work a step
forward implementation of full integrated prototype of
such system is done: main modules and corresponding
interfaces are discussed.

5 Conclusion
The proposed architecture of an extendable system for
optimization and execution of approximate complex
queries formulated in similarity-based declarative query
language demonstrates the possible integration of tech-
niques proposed in previous research and connects to-

gether several parts: similarity-based algebra, extended
cost/quality models, resource allocation approach.

The future work includes full prototype development
supporting adaptable cost and quality models, adaptive
query evaluation, enhanced optimizer for approximate
query evaluation, and support for multiple execution
platforms.

References
[1] S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrah-

manian. A multi-similarity algebra. In Proceedings
of the 1998 ACM SIGMOD international confer-
ence on Management of data, SIGMOD ’98, pages
402–413, New York, NY, USA, 1998. ACM.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner,
S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on
very large data. In Z. Hanzálek, H. Härtig, M. Cas-
tro, and M. F. Kaashoek, editors, EuroSys, pages
29–42. ACM, 2013.

[3] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm,
V. R. Borkar, Y. Bu, M. J. Carey, R. Grover, Z. Heil-
bron, Y.-S. Kim, C. Li, N. Onose, P. Pirzadeh,
R. Vernica, and J. Wen. Asterix: An open source
system for “big data“ management and analysis.
PVLDB, 5(12):1898–1901, 2012.

[4] B. Arai, G. Das, D. Gunopulos, and N. Koudas.
Anytime measures for top-k algorithms. In
C. Koch, J. Gehrke, M. N. Garofalakis, D. Srivas-
tava, K. Aberer, A. Deshpande, D. Florescu, C. Y.
Chan, V. Ganti, C.-C. Kanne, W. Klas, and E. J.
Neuhold, editors, VLDB, pages 914–925. ACM,
2007.

[5] S. Atnafu, L. Brunie, and H. Kosch. Similarity-
based algebra for multimedia database systems. In
ADC, pages 115–122, 2001.

[6] D. Braga, A. Campi, S. Ceri, and A. Raffio. Joining
the results of heterogeneous search engines. Inf.
Syst., 33(7-8):658–680, 2008.

[7] N. Bruno, S. Jain, and J. Zhou. Continuous cloud-
scale query optimization and processing. PVLDB,
6(11):961–972, 2013.

[8] P. Budı́ková, M. Batko, and P. Zezula. Query lan-
guage for complex similarity queries. In T. Morzy,
T. Härder, and R. Wrembel, editors, ADBIS, vol-
ume 7503 of Lecture Notes in Computer Science,
pages 85–98. Springer, 2012.

[9] S. Chaudhuri, R. Ramakrishnan, and G. Weikum.
Integrating db and ir technologies: What is the
sound of one hand clapping? In CIDR, pages 1–
12, 2005.

[10] U. Dayal, M. Castellanos, A. Simitsis, and
K. Wilkinson. Data integration flows for business
intelligence. In M. L. Kersten, B. Novikov, J. Teub-
ner, V. Polutin, and S. Manegold, editors, EDBT,
volume 360 of ACM International Conference Pro-
ceeding Series, pages 1–11. ACM, 2009.



[11] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150. USENIX Association, 2004.

[12] A. Deshpande, Z. Ives, and V. Raman. Adaptive
query processing. Found. Trends databases, 1:1–
140, January 2007.

[13] O. Dolmatova, A. Yarygina, and B. Novikov. Cost
models for approximate query evaluation algo-
rithms. In A. Caplinskas, G. Dzemyda, A. Lu-
peikiene, and O. Vasilecas, editors, Databases and
Information Systems. Tenth International Baltic
Conference on Databases and Information Sys-
tems. Local Proceedings, Materials of Doctoral
Consortium., pages 20–28. Vilnius: Zara, 2012.

[14] J. M. Hellerstein, P. J. Haas, and H. J. Wang. On-
line aggregation. In J. Peckham, editor, SIGMOD
Conference, pages 171–182. ACM Press, 1997.

[15] I. F. Ilyas, R. Shah, W. G. Aref, J. S. Vitter,
and A. K. Elmagarmid. Rank-aware query op-
timization. In G. Weikum, A. C. König, and
S. Deßloch, editors, SIGMOD Conference, pages
203–214. ACM, 2004.

[16] D. Kossmann. The state of the art in distributed
query processing. ACM Comput. Surv., 32(4):422–
469, Dec. 2000.

[17] D. Kossmann and K. Stocker. Iterative dynamic
programming: a new class of query optimization
algorithms. ACM Trans. Database Syst., 25(1):43–
82, Mar. 2000.

[18] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song.
Ranksql: Query algebra and optimization for rela-
tional top-k queries. In F. Özcan, editor, SIGMOD
Conference, pages 131–142. ACM, 2005.

[19] F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Har-
itsa, G. Weikum, M. J. Carey, F. Casati, E. Y.
Chang, I. Manolescu, S. Mehrotra, U. Dayal, and
V. J. Tsotras, editors. Proceedings of the 26th Inter-
national Conference on Data Engineering, ICDE
2010, March 1-6, 2010, Long Beach, California,
USA. IEEE, 2010.

[20] H. Lim, H. Herodotou, and S. Babu. Stubby:
A transformation-based optimizer for mapreduce
workflows. PVLDB, 5(11):1196–1207, 2012.

[21] S. E. Madnick, R. Y. Wang, Y. W. Lee, and H. Zhu.
Overview and framework for data and information
quality research. J. Data and Information Quality,
1(1):2:1–2:22, June 2009.

[22] D. Montesi, A. Trombetta, and P. A. Dearnley. A
similarity based relational algebra for web and mul-
timedia data. Inf. Process. Manage., 39(2):307–
322, 2003.

[23] B. Novikov, N. Vassilieva, and A. Yarygina. Query-
ing big data. In Proceedings of the 13th In-
ternational Conference on Computer Systems and
Technologies, CompSysTech ’12, pages 1–10, New
York, NY, USA, 2012. ACM.

[24] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language
for data processing. In J. T.-L. Wang, editor, SIG-
MOD Conference, pages 1099–1110. ACM, 2008.

[25] F. Pentaris and Y. Ioannidis. Query optimization in
distributed networks of autonomous database sys-
tems. ACM Trans. Database Syst., 31(2):537–583,
June 2006.

[26] I. Schmitt and N. Schulz. Similarity relational cal-
culus and its reduction to a similarity algebra. In
D. Seipel and J. M. T. Torres, editors, FoIKS, vol-
ume 2942 of Lecture Notes in Computer Science,
pages 252–272. Springer, 2004.

[27] L. Sidirourgos, M. L. Kersten, and P. A. Boncz.
Sciborq: Scientific data management with bounds
on runtime and quality. In CIDR, pages 296–301.
www.cidrdb.org, 2011.

[28] A. Simitsis, K. Wilkinson, M. Castellanos, and
U. Dayal. Optimizing analytic data flows for mul-
tiple execution engines. In K. S. Candan, Y. Chen,
R. T. Snodgrass, L. Gravano, and A. Fuxman, edi-
tors, SIGMOD Conference, pages 829–840. ACM,
2012.

[29] M. Theobald, G. Weikum, and R. Schenkel. Top-k
query evaluation with probabilistic guarantees. In
M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J.
Miller, J. A. Blakeley, and K. B. Schiefer, editors,
VLDB, pages 648–659. Morgan Kaufmann, 2004.

[30] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive
- a petabyte scale data warehouse using hadoop. In
Li et al. [19], pages 996–1005.

[31] A. Yarygina. Execution and optimization tech-
niques for approximate queries in heterogeneous
systems. Programming and Computer Software,
pages 309–317, 2013.

[32] A. Yarygina and B. Novikov. Optimizing resource
allocation for approximate real-time query process-
ing. Computer Science and Information Systems,
11:69–88, January 2014.


