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School of Computer Science and Informatics,
University College Dublin,

Ireland

Abstract. Temporal networks encode interactions between entities as
well as the time at which the interactions took place, allowing us to
identify systematic processes within the network. We can identify sub-
processes or temporal motifs that recur frequently across a large network.
In this paper, we present a strategy that allows us to identify which of a
given set of temporal processes are over-represented. This highlights pe-
culiarities of behaviour in the network. Our strategy involves construct-
ing a set of interesting temporal processes, counting their embeddings
in the network through subgraph matching, and then comparing this
against counts in a temporally random version of the network. The net-
work is randomized by shu✏ing the time-stamps in the original network.
We present an evaluation on data from Prosper.com, a peer-to-peer lend-
ing website. Prosper.com was closed for regulatory reasons in 2009 and
our evaluation shows interesting di↵erences between the pre- and post-
closure networks. In particular, temporal motifs indicating arbitrage are
over-represented pre-closure and under-represented afterwards.

1 Introduction

Increasingly, temporal information is included with complex network data sets.
Thus, instead of examining a set of static interactions between individuals, a
finer-grained understanding of those interactions is now possible. Temporal net-
works have been used to represent a wide variety of social phenomena, from
person-to-person communication to contagious disease spread by physical con-
tact between people. The notion of spreading in a network can be more accurately
identified when the times at which interactions took place are recorded.

When analyzing the processes that give a complex network its structure,
recurring patterns of interaction often come to light. These frequent patterns
are referred to as motifs, and are considered the building blocks of networks
[16]. When temporal information is incorporated into the search for motifs, the
results can have a clearer interpretation. For example, the initiator of a conta-
gion may be easier to identify, since the first interaction in the contagion would
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have originated from that individual. Likewise, the potential reach of a piece of
information in a communication network may be easier to isolate, given that
propagation is time-dependent in the network.

The network we analyze in this paper comes from Prosper.com [20], a peer-
to-peer lending platform. Members of the website can register to borrow and
lend, and act without a bank as an intermediary. The loans among members are
unsecured, so there is a risk that a member to whom you lend may default on
their repayments. Temporal information is available with the data, which allows
us to examine the structure and temporal dimension of some interesting motifs.

Given the wide range of credit ratings that the members have, and the abil-
ity for members to both borrow and lend, the opportunity for arbitrage arises.
Members with a good credit rating can borrow money at a low interest rate,
and lend the same amount at a high interest rate to members with lower credit
ratings, aiming to profit from the di↵erence in rates. The website may also pro-
vide an opportunity for members to engage in money laundering. In a simple
example, money could be lent to from one member to another, and the borrow-
ing member could default, hence completing the transfer of funds without the
regulation of a bank. More complicated examples could also be imagined, involv-
ing intermediate members. In both scenarios, the network structure representing
the behaviour must be composed of time-respecting paths, in which interactions
occur in a non-decreasing temporal order.

The purpose of our current study is to examine the extent to which these
time-dependent behaviours occur in the Prosper network to a greater extent than
might be expected. To do this, we first count the embeddings of a set of time-
respecting network patterns that represent this behaviour, using a subgraph
matching algorithm. It is important to note that the patterns are not mined
automatically - rather they are specified a priori and sought in the network.
Then, we repeatedly re-assign the time-stamps on the interactions randomly,
counting the embeddings again each time. It turns out that the presence of the
time-respecting patterns is highly dependent on the timing of the interactions
in the real network. This demonstrates the importance of temporal analysis for
understanding behaviour in networks.

The paper is organized as follows. Section 2 presents related work, in the
areas of temporal network analysis, subgraph matching and modularity. Section
3 introduces our methods for performing the matching and temporal analysis.
Our results are discussed in Section 4. Section 5 concludes the paper and suggests
future work.

2 Related Work

In order to asses the frequency of temporal motifs in networks, this paper draws
on work from the fields of temporal network analysis and subgraph matching.
To asses the significance of certain motifs in a network, we use methods from
the area of network modularity.



2.1 Temporal Network Analysis

Given the prevalence of temporal information available with network data, ideas
associated with static networks are being revised to take this new aspect into
account. A comprehensive review [8] details these concepts. A fundamental con-
cept in this paper is that of a time-respecting path, defined as a sequence of
contacts which occur at non-decreasing times [10].

In a reachability graph, there must be a time-respecting path between nodes
i and j for a directed edge to exist between them. Reachability graphs reveal the
nodes which are reachable from a single root node [17]. Analysis of the reacha-
bility graph within a dating network of high-school students reveals interesting
behaviour in relationships [2]. A time-respecting subgraph [22] is a generalization
of a reachability graph, since it does not require a root node, but insists on
reachability along each directed path.

The lifespan of a piece of information in a temporal communication network
may be specified by a time window [25], which measures the time between the
end of one communication and the beginning of the next. The closer in time
the contacts take place, the higher the likelihood that the subject is the same.
Similarly, the relay time of an interaction captures the time taken for a newly
infected individual to spread the infection further via the next interaction they
participate in [11]. The spread of information through a temporal network can
also be modeled by a cascade. The structure of cascades can reveal spreading
and community development [7]. The importance of time-constrained cascades
is emphasized for understanding contagion [1].

Temporal motifs, as defined by Kovanen et al., are connected subgraphs com-
posed of similar event sequences, where similarity is measured in terms of the
topology and temporal ordering of the events [12]. All adjacent events in a tem-
poral motif must occur within time �t of each other, and the events connected
to a node must be consecutive in time. So if a node n in a temporal motif partic-
ipates in events at times t0 and t2, then if an event exists involving n at time t1,
it must also be included in the motif so that the motif is valid. This is distinct
from a flow motif, in which directed events that meet head-to-tail must be con-
secutive in time. Kovanen et al. propose an algorithm to find temporal motifs,
which do not have the flow requirement. In contrast, the aim of our approach
is to e�ciently find subgraphs in which interactions occur within a specified
time of each other, and in which events meeting head-to-tail are consecutive in
time. In subsequent work, Kovanen et al. explored temporal motifs in a mobile
communication network [13]. By including other attributes of the data, interest-
ing mechanisms were found such as gender-related di↵erences in communication
patterns, and a tendency for similar individuals to communicate more often than
might be expected.

2.2 Graph and Subgraph Isomorphism

The subgraph isomorphism problem determines whether a given graph contains
a subgraph which has the same topological structure as another given graph.



Subgraph isomorphism is an NP-complete problem [6], so the time complexity
of brute force matching algorithms increases exponentially with the size of the
graphs and query graphs to be matched. This makes the problem prohibitively
expensive to solve for large graphs.

Algorithms were developed which restrict the topology of the graphs and
hence constrain the complexity. Such methods include the enforcement of pla-
narity [9] or bounded valence [14]. Other approaches depend on deriving associ-
ated graphs, and on topological features such as strong regularity [5]. Another
type of derived graph used is the canonical form of the graph, as in the Nauty
algorithm [15].

Ullmann proposed a backtracking approach to solve the graph and subgraph
isomorphism problems [24]. In an extension to the popular algorithm, the search
space is pruned based on the degree of nodes in the graphs to be matched. An
algorithm by Schmidt et al. [23] also employs backtracking, but uses the distance
matrix representation of a graph to inspire the pruning steps.

The VF algorithm of Cordella et al. presents a depth-first search strategy
for graph and subgraph isomorphism [3]. The matching process is described by
a state space representation, in which each state of the process is associated
with a partial solution. The partial solution includes the elements of the two
graphs which match each other so far. The algorithm tries to extend each partial
solution based on neighbouring nodes in the query graph and the network graph
which maintain the match. The speed of the algorithm compares favourably with
Ullmann’s popular backtracking approach. An enhanced version, VF2, provides
further performance gains [4] by substantially reducing memory requirements.

2.3 Network Motifs

Network motifs are patterns of connected nodes that occur at higher frequencies
in real networks than in randomized networks [16]. Detecting network motifs
gives insight into the processes that networks encode. Milo et al. discovered
that classes of networks which performed similar functions had similar network
motif profiles. For example, information processing networks from such di↵erent
application areas as biomolecules within a cell and synaptic connections between
the neurons in Caenorhabditis elegans were comprised of similar network building
blocks.

To make this finding, the authors computed the occurrence frequency of a
collection of motifs in a network. The structure of the network was then ran-
domized, although each node in the randomized network maintained the same
in- and out-degree as in the original network. The motifs were counted again
in the randomized network. This randomization and counting was performed
repeatedly, and the mean of the motif occurrences was computed. When the
number of embeddings of a given motif is much lower in a randomized network,
its frequency in the original network is therefore indicative of the functionality
encoded by that network.

In contrast to the work of Milo et al., we aim to unearth significant tem-
poral structures of the network, rather than structural properties in isolation.



To achieve this, we count the time-respecting embeddings of query graphs that
we specify. We then randomize the temporal information associated with the
network, following a methodology described in Section 3. We then count the
time-respecting embeddings in the randomized network. After repeating this
step a number of times, we compute the average number of embeddings in the
randomized networks. This reveals an interesting set of structures whose preva-
lence depends on processes encoded in the original version of the network.

3 Methods

This section describes our problem framework. We present our methodology for
matching time-respecting subgraphs and identifying their prevalence in random-
ized versions of real temporal networks.

3.1 The Problem Framework

To find subgraphs embedded in a network which match the query graphs we
specify, we must solve the subgraph isomorphism problem in the context of
temporal networks. The definition of subgraph isomorphism for static networks
may be presented as follows [24]:

Definition 1. A graph G2 is isomorphic to a subgraph of a graph G1 if and only

if there is a one-to-one correspondence between the node sets of this subgraph and

of G2 that preserves adjacency.

Instead of referring to an “edge” between two nodes, we use the term “inter-
action” to specify a triplet, made up of two nodes and the time of their contact.
We define a directed temporal graph as follows:

Definition 2. A directed temporal graph G consists of a set V of nodes and a

set E of three-tuples denoting interactions. An interaction ei 2 E is represented

by ei = (ui, vi, ti), in which ui is the source node, vi is the target node and ti is

the initiation time of the interaction.

In order for a flow of information or a disease contagion to take place in a
temporal network, adjacent interactions must be time-respecting.

Definition 3. Let ei and ej be interactions in a directed temporal graph. The

interactions are time-respecting if they are adjacent and 0  |tj � ti|  d, for

some threshold d. If the interactions do not share a source node or a target node,

then either vi = uj and ti  tj, or vj = ui and tj  ti must be true.

Time-respecting paths describe a non-decreasing sequence of interactions
[19]. A path can be thought of as a mechanism for passing information from
a source, along a sequence of intermediaries, to a target. We aim to find sub-
graphs composed of these paths in temporal networks.



With traditional time-slicing, the specified time window determines the inter-
actions examined, between a minimum and maximum interaction time. However,
a time-respecting path has no such bounds in reality. In fact, given the right con-
nectivity and timing of interactions, a path might be initiated when the network
is first created, and continue until the latest point in the data set. Under such
circumstances, time-slicing can lose a lot of important context and information.

We define a time-respecting subgraph in terms of time-respecting interac-
tions. We seek query graphs that are connected, so we require that the embedded
subgraphs are connected.

Definition 4. A time-respecting subgraph S = (V 0
, E

0) of a temporal graph

G = (V,E) is composed of a set of nodes V

0 ✓ V , from which any pair of nodes

is connected via a set of interactions E

0 ✓ E such that the nodes comprising in-

teractions in E

0
are in V

0
, and every adjacent interaction pair is time-respecting.

In our implementation, embedded subgraphs are induced. So, given any pair
of nodes in an embedded subgraph, all interactions between them are included
in the embedding. So, if a potential embedding includes more interactions than
specified by the query graph, the embedding will not be returned.

Fig. 1. An example of a time-respecting subgraph. Here, t0  t1  t2  t3. All inter-
actions which are incident to the same node must occur within time d of each other.
Thus, we require that |t3 � t0|  d. All incoming edges to a node n must precede all
outgoing edges from node n. So, we must have that t0  t2, t0  t3, t1  t2 and t1  t3.

3.2 The Matching Algorithm

We retain the notation used in the description of the recursive VF2 algorithm
by Cordella et al. [4]. The matching process is described by a state space rep-
resentation, in which each state s of the process represents a partial mapping
solution. In a state s, a portion of the query graph G2 matches a portion of the
network graph G1. The portion of G1 in the mapping is induced. So, given a set
of nodes in the mapping, any interactions between them are also present in the
mapping.

Given such an intermediate state s, the mapping is extended by first comput-
ing candidate node pairs (one node each from G1 and G2). The candidate node
from G2 is selected from the set of neighbours of the nodes in G2 that are cur-
rently in the mapping. This guarantees that the node is connected to the portion



of the query graph currently matched. The candidate node from G1 is selected
in the same way, from the neighbours of the nodes currently matched in the
embedding from G1, so the embedding will be connected. Once the new nodes
are included in the mapping, all interactions between them are also included.
The two new, extended portions in the mapping must be graph isomorphic in
order to be considered a feasible match. If they are not graph isomorphic, the
candidate nodes are discarded as a matching pair, and the process then continues
with a new node pair.

If a topological match is confirmed, a semantic match is considered. In our
setting, we utilize the dates on which the interactions occur in G1. Given an em-
bedding of the subgraph G2 in the graph G1, we don’t require that the dates on
each paired interaction match each other, but rather that the partial embedding
of G2 in G1 is time-respecting.. Since we are interested in the actual times at
which interactions occurred in the network data, only the semantic feasibility of
G1 is checked.

The memory requirements of the VF2 algorithm are constrained through the
use of data structures which are maintained at each recursion level. We keep
track of both topological and temporal information in the same way. A map
data structure named core 1 contains the nodes in the current mapping from
G1 to G2. This provides an e�cient way for us to test that a candidate node for
inclusion in the mapping will maintain the time-respecting property we require
for all of the induced edges.

Before testing the legitimacy of a candidate node G1 node, we construct a
set of data structures. The list pred contains the predecessors of G1 node in G1
which are also in core 1, and thus part of the current mapping. Analogously,
succ contains the successors of G1 node in G1 which are also in core 1. The
lists pred dates and succ dates contain the dates, in increasing order, on which
connections between G1 node and the relevant predecessor or successor nodes,
respectively, were made. The list dates combines these dates, sorted in increasing
order.

As described in Definition 4, a pairwise comparison of adjacent interactions
must ensure that each pair is time-respecting. Accordingly, a candidate node
must fulfil these criteria when included in a potential embedding of G2 in G1.

3.3 Re-assigning Time-stamps

We aim to discover the extent to which the number of embeddings of a query
graph in the network is uniquely a property of the temporal aspect of the net-
work. To ascertain this, we repeatedly re-assign the time-stamps on the interac-
tions, and count the number of embeddings again each time. The re-assignment
is performed by first stripping all of the time-stamps o↵ the interactions. We
then shu✏e the order of this time-stamp collection using the shu✏e algorithm
from Python’s built-in random module. We then iterate over the entire set of
interactions, assigning a time-stamp to each interaction. Thus, the re-assignment
is global in scale.



4 Results

To find out whether certain types of time-respecting subgraph are characteristic
of real networks, we constructed a temporal network and a set of query graphs
in order to perform our experiments. This section details the network data used,
the query graphs, our analysis and the results.

4.1 Network Data

The website at Prosper.com [20] provides a forum for prospective borrowers and
lenders to connect and exchange funds. Prosper.com allows members to borrow
and lend without the presence of a bank. This means that borrowers with low
credit-worthiness have a better chance to get loans, since the requirements for
being funded are lower. It also gives people a chance to invest smaller amounts,
to experiment with lending.

For the purpose of our experiments, we constructed a directed temporal net-
work of lenders and borrowers, connected via loans. An interaction is composed
of a source (the lender) and a target (the borrower) and represents the money
sent in contribution to a loan request. An interaction also contains the time at
which the money was transferred. We set the d-value (maximum time allowed
between interactions) to 6 days, to reflect the time-scale at which the network
operates.

Since the Prosper.com marketplace closed for a period in 2009 due to regu-
latory issues, we extracted two portions of the network; one before and one after
the temporary closure. This allowed us to compare the social behaviours that
occurred in the network as a result of di↵erent levels of regulation. The details
of these networks are listed in Table 1. An important point to note is that the
duration of each network is the same, as is the size of each network. So, when the
time-stamps are randomly re-assigned, there is the same amount and variation
in the time-stamps.

Network Start Date End Date Order Size

Pre-closure 1st November 2006 31st December 2006 8,690 72,215
Post-closure 1st September 2009 31st October 2009 7,201 77,026

Table 1. The pre-closure network spans the last three months of 2006, while the post-
closure network runs from the beginning of September to the end of October in 2009.
Both networks have a similar number of interactions, and occur over the same amount
of time. This means that shu✏ing the time-stamps on the interactions ought to have a
similar e↵ect in both networks, since the distribution of time-stamps and interactions
is comparable.



4.2 Query Graphs

We enumerate some small directed query graphs that have clear interpretations
in the context of the Prosper network, illustrated in Fig. 2. These only encode
the topological structure of the patterns we are interested in. When we examine
their topological embeddings in the network, we also check that the embeddings
are time-respecting, so the notion of non-decreasing activations along the paths
in the query graphs is maintained.

(a) 2-path (b) 2-out-star (c) 2-in-star (d) feed-forward (e) 3-path

Fig. 2. The query graphs sought in the Prosper network. Each node represents a mem-
ber of the Prosper marketplace, and each interaction represents a sum of money being
transferred via a loan. These queries were chosen since their structure is clear in the
context of the network data.

4.3 Analysis

The experiments were performed on a Linux server with a 2 GHz processor,
limited to 5GB of physical memory. The algorithms we proposed for performing
the subgraph matching and the re-assignment of time-stamps were implemented
in the programming language Python [21], using the NetworkX library [18].
The VF2 algorithm is included in this library, and was implemented as part
of a project at the Complexity Sciences Center and Physics Department, UC
Davis. We extended this implementation to process temporal networks and use
temporal information during the matching process. Our implementation can
handle directed graphs as well as directed multigraphs (graphs with multiple
interactions between nodes).

The results of our experiments are listed in Table 2. In both the pre- and
post-closure network, the 2-in-star and 2-out-star queries had the highest number
of embeddings. This is likely to be a result of how the Prosper marketplace is
used; by members who either exclusively borrow or lend. Borrowers have a high
in-degree, since the loans they request are funded from many sources, who all
give relatively small amounts. Lenders have a high out-degree, since they need
to distribute their lending portfolio over a range of borrowers in order to make
a more reliable profit.

When the time-stamps are randomly re-assigned in the pre-closure network,
the number of embeddings of the query graphs drops between 20% and 89.1%.
This strongly suggests that the actual timing of the interactions was important



Network Structure Count Mean Std. Dev. Decrease

Pre-closure

2-path 15,061 11,717.8 166.4 22.2%
2-out-star 1,083,154 819,451.4 3,826.1 24.3%
2-in-star 5,209,926 1,083,642.2 2,215.9 79.2%
feed-forward 1,130 123.0 12.5 89.1%
3-path 1,584 1,267.5 181.5 20.0%

Post-closure

2-path 6,237 6,411.4 179.8 -2.8%
2-out-star 1,064,034 786,908.3 2,784.4 26.0%
2-in-star 17,900,180 3,806,272.3 9,061.4 78.7%
feed-forward 1,516 217.0 20.7 85.7%
3-path 825 847.0 219.7 -2.7%

Table 2. Comparing the number of embeddings found in the pre- and post-closure
networks. The count lists the number of embeddings with the original time-stamps
in place. The mean shows the average over 100 separate counts of the number of
embeddings after randomly re-assigning the time-stamps every time. In the pre-closure
network, embedding counts dropped after shu✏ing the time-stamps. The same was
true in the post-closure network, except for the path query graphs, indicating that
their presence in the network is not necessarily a property of the original network.

for the processes to take place. The greatest drop in the number of embeddings
occurs with the queries containing a higher in-degree. This makes sense, since a
borrower needs to get funds from multiple lenders at around the same time for
a loan to go ahead. If the time-stamps are shu✏ed, this condition may not be
met. This demonstrates the e↵ectiveness of our strategy; real social behaviour
in the network is shown to be dependent on interaction timing.

The most interesting results relate to the path queries in the post-closure
network. An intermediate node in a path may represent an arbitrageur. An
arbitrageur aims to profit from the di↵erence in interest rates between the loan
taken on and the loans given to borrowers. The timing of this sequence of loans
is important for the arbitrage to be successful. The di↵erent results for the pre-
and post-closure network indicate the influence of greater regulation within the
marketplace. Specifically, the number of embeddings of path queries does not
decrease when the time-stamps are re-assigned. Thus, the existence of the time-
respecting paths in the original network does not reveal a process that is unique
to the network. This is consistent with the fact that stronger regulation may
have discouraged arbitrage. In the case of money laundering, the existence of
intermediate individuals is also a possibility. So, this result also indicates that
if attempts at money laundering occurred in the pre-closure network, it was
discouraged by greater regulation.

5 Conclusions and Future Work

The primary aim of this work is to evaluate the importance of temporal in-
formation in a network for identifying the processes that underly the network



topology. Specifically, we examined the network from Prosper.com to see if the
existence of some suspicious patterns was dependent on the time at which the in-
teractions which made up the pattern took place. To do this, we specified some
query graphs to search for in the network and counted their time-respecting
embeddings. Then, we randomly re-assigned the time-stamps and counted the
embeddings again. We did this latter step 100 times, and took the average of the
counts. Almost all the counts dropped in comparison with the actual network.

Since Prosper.com closed due to regulatory issues in 2009, we compared a
portion of the pre- and post-closure network to see if there was a change in
behaviour. The query graphs associated with arbitrage or potentially money
laundering behaviour were prevalent in the pre-closure network, but not so in
the post-closure network. This was revealed by the fact that, after temporal
randomization, the number of embeddings dropped in the pre-closure network,
but did not change in the post-closure network. This is likely to be an e↵ect of
increased regulation on the lending platform.

The time at which interactions take place is a key component of network
formation, and can help to explain many types of emergent social behaviour. In
future, we aim to apply these methods to other networks which contain temporal
information, especially networks which operate at a finer temporal grain. This
will help to validate the performance of our algorithm, and may give an insight
into which processes play a significant role in the networks in question. Given our
prior knowledge of the Prosper network, our validation of what constitutes an
interesting pattern is intuitive. In future, a method for automatically extracting
over-represented patterns would overcome this dependency and potentially yield
unforeseen network behaviour.
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