
MMT Objects

Florian Rabe

Computer Science, Jacobs University, Bremen, Germany

Abstract

Mmt is a mathematical knowledge representation language, whose ob-
ject layer is strongly inspired by OpenMath. In fact, the first version of
the Mmt system implemented exactly OpenMath objects.

But over time Mmt has evolved and deviated from OpenMath in
some respects. Some of these deviations are experimental or specific to
Mmt applications, but others may be interesting for future versions of
OpenMath.

This papers presents Mmt objects and discusses the differences to
OpenMath objects.

1 Introduction

Mmt [RK13] is a formal knowledge representation language following the OM-
Doc approach [Koh06]. It focuses on the foundation-independent and modular
representation of formal mathematical content. Like OMDoc, it subsumes
OpenMath as the representation language for formal mathematical objects.

The Mmt system [Rab13] coherently implements the Mmt data structures
along with various logical services (e.g., type reconstruction, simplification),
knowledge management services (e.g., presentation, search), and applications
(e.g., IDE, library browser).

Notably, the Mmt language and system are generic in the sense that they
can be easily instantiated with different formal languages such as logics or type
theories.

Over 7 years of development, the implementation of objects in Mmt has
deviated from OpenMath in several ways. The main motivation was to re-
duce the number of productions in the grammar. This greatly simplifies the
development of inductive algorithms and is a key enabling factor to keep the
implementation manageable.

In this paper, we present and discuss the differences between OpenMath
and Mmt objects. We start by presenting the two grammars in Sect. 2. Then
we discuss individual differences in Sect. 4, 5, 6. Mmt also provides a more
precise definition of variable scope and substitution than OpenMath, which
we describe in Sect. 3.

1

2 Overview

Symbols and Variables We write c for a symbol reference (cdbase, cd, name).
This is a triple of a URI cdbase and two names of a content dictionary cd and
a symbol name defined in cd.

We write x for a variable. This is just a name.

OpenMath Objects OpenMath objects O are formed by the following
grammar:

O ::= I(i) | F(f) | S(s) | BA(b)
| c | x
| A(O,O∗) | AT T (O;KV ∗) | B(O;AT T (x;KV ∗)∗;O) | E(c;O∗)

KV ::= c 7→ O

where ∗ is (possibly empty) repetition.
There are 10 different productions for objects:
• 4 literals: integers I(i), floating point numbers F(f), strings S(s), and

byte arrays BA(b),
• 2 name references to symbols (named objects in a global namespace) and

variables (named objects in the local context),
• 4 complex objects:

– application A(O,O1, . . . , On) of a function to arguments,
– attribution AT T (O;KV1, . . . ,KVn) of a key-value list to an object,
– binding B(B;V1, . . . , Vn;S) of a binder B with attributed variables
Vi (which are bound in S) and scope S,

– errors E(c;O1, . . . , On) formed from applying a symbol to arguments.
In the grammar above, we omitted foreign objects. These are arbitrary non-

OpenMath data, which may occur as the arguments of an error and the values
of a key-value pair.

MMT Objects Mmt objects E are formed by the following grammar:

E ::= Lc(s)
| c | x
| c(γ; Γ;E∗)

Γ ::= (x[: E][= E])∗

γ ::= (x = E)∗

There are 4 different productions for objects:
• Literals Lc(s) consists of a symbol c identifying the type and a string

encoding s of the value.
• Symbols c and variables x are as for OpenMath.
• Complex objects c(γ; Γ;E1, . . . , En) are formed from a head symbol c, a

substitution γ, a context Γ (whose variables are bound in the Ei), and a
list of arguments Ei.

2

In addition to objects, Mmt defines two additional concepts: contexts and
substitutions.

Contexts Γ are lists of variable declarations x[: T][= D] where the type T and
the definiens D are optional. Substitutions γ are lists of assignments x = E.

3 Scoping

We will use the notation Xi for an Mmt variable declaration xi[: Ti][= Di]

Objects in Context OpenMath does not clarify whether bound variables
may occur in attributions of other bound variables of the same binding.

Mmt formalizes this as follows. A variable x is free in E if it occurs in E
without being bound. And in c(γ;X1, . . . , Xm;E1, . . . , En), any occurrence of
xi in Ti+1, Di+1, . . . , Tm, Dm, E1, . . . , En is bound.

In particular, Mmt allows every bound variable to occur in the type and
definiens of later variables of the same binding. Note that this includes the
degenerate case of a context x, x : x, which declares two variables of the same
name with the first one occurring in the type of the second one.

A context Γ = X1, . . . , Xm is well-formed if every Ti and Di (if given)
is well-formed in context X1, . . . , Xi−1. And an object E is well-formed in
context Γ if all free variables of E are declared in Γ.

We further define that if xi = xj = x for i < j, i.e., multiple variables in
Γ have the same name, then all free occurrences of x in E are occurrences of
xj . Intuitively, the declaration of xj shadows the one xi. This is irrelevant for
well-formedness but matters when looking up the type or definiens of x in Γ.

Substitution Well-formedness relative to a context permits a formal defini-
tion of substitution. γ of the form x1 = E1, . . . , xm = Em is a well-formed
substitution from Γ = X1, . . . , Xm to Γ′ if every Ei is well-formed in context Γ′.

In that case, if E is well-formed in context Γ, we write E[γ] for the object
arising from replacing every free occurrence of xi in E with Ei. Then E[γ] is
well-formed in context Γ′.

As usual, we assume substitution to be capture-avoiding. This, however,
means that E[γ] is under-specified because the necessary α-renaming of the
bound variables of E is not specified. The Mmt implementation α-renames
bound variables only when necessary and then does so by appending distin-
guished characters to the name.

4 Attributions

Attributed Variables Mmt contexts can be seen as a list of attributed
variables restricted to 2 distinguished keys for type and definiens.

Let type and def be special symbols. If we have the correspondence

O ' E and O′ ' E′

3

between OpenMath and Mmt objects, then

AT T (x; [type 7→ O], [def 7→ O′]) ' x[: E][= E′]

and accordingly for lists of attributed OpenMath variables corresponding to
Mmt contexts.

Effectively, Mmt allows only 2 distinguished keys when attributing variables.
This is a major limitation compared to OpenMath, which allows any symbol
as a key. However, to the author’s knowledge, type and definiens attributions
account for the vast majority of variable attributions in practice.

At the same time, building type and definiens into the grammar explic-
itly tremendously simplifies the grammar and arguably makes the treatment of
bound variables more intuitive.

Attribution Objects Mmt does not allow for attribution objects other than
the limited variable declarations from above.

However, OpenMath objects like AT T (O; k 7→ V) for a semantic attribu-
tion key k can often be represented as A(k,O, V). Therefore, this might not be
a critical limitation in practice.

Ignorable Attributions The above does not cover non-semantic (i.e., ignor-
able) attributions.

However, the Mmt implementation anyway permits attaching metadata to
any object (including subobjects). Mmt metadata is orthogonal to the syntax
of objects and includes URI-object pairs (which subsumes OpenMath attribu-
tions) as well as RDF-style typed links and tags.

Such extra-linguistic attributions may be preferable in practice because they
make it much easier for applications to ignore the ignorable attributions (e.g.,
during pattern-matching).

5 Complex Objects

Mmt uses only one constructor for complex objects. The basic idea is that
every inner node of an Mmt syntax tree is labeled with a symbol, which defines
the meaning of the subtree.

In particular, the syntactic constraints and intended semantics of a com-
plex Mmt object are completely relegated to the head symbol (i.e., specified in
the content dictionary in which the head symbol is declared). Note that this
is similar to OpenMath binding and attribution objects, but different from
OpenMath application objects (for which OpenMath does not prescribe but
strongly suggests function application as the intended semantics).

Complex Mmt objects subsume most OpenMath application and binding
and all error objects as follows. If

Oi ' Ei and Vj ' Xj ,

4

then
A(c,O1, . . . , On) ' c(·; ·;E1, . . . , En)

B(c;V1, . . . , Vm;O1) ' c(·;X1, . . . , Xn;E1)

E(c;O1, . . . , On) ' c(·; ·;E1, . . . , En)

Here we write · for the empty substitution, context, or argument list.

5.1 Limitations

A major limitation of Mmt objects is that the first child of application and
binding objects is assumed to be a symbol.

Application Objects This limitation is quite severe for application objects,
where it excludes objects A(O,O1, . . . , On) where O is, e.g., a variable or a
λ-abstraction.

In the setting of Mmt, this is acceptable because Mmt assumes that such
application objects are anyway only meaningful in the presence of a formal
language that defines the meaning of functions, e.g., a λ-calculus.

Representations of λ-calculi in Mmt are most natural if they provide three
symbols arrow, lambda, and apply. In that case, application objects with
complex functions can be written in Mmt as apply(·; ·;E,E1, . . . , Em).

However, for OpenMath in general, it is much less clear whether such a
limitation would be reasonable.

Binding Objects The limitation is less severe for objects B(O;V1, . . . , Vm;O1)
because O is usually a symbol anyway.

Occasionally, it is useful to allow binders where O = A(c, o1, . . . , ol), e.g.,

for a definite integral
∫ b

a
with O = A(

∫
, a, b). In Mmt, these arguments can be

represented by using the substitution γ as in

B(A(
∫
, a, b);x; f(x)) '

∫
(from = a, to = b;x; f(x))

Arguably, the Mmt representation is even more natural than the OpenMath
representation in this example because it makes all arguments available at the
toplevel of the object.

Error Objects The first child of an OpenMath error object is a symbol
anyway so that the representation in Mmt does not limit expressivity.

However, it has the effect that applications and errors are represented in the
same way. This may be seen as a limitation because the syntactical distinction
between error and application objects is lost. For example, Mmt makes it
harder to spot errors and to separate errors from the mathematically meaningful
objects.

On the other hand, the syntactic distinction employed by OpenMath can
also cause additional work. For example, in many programming languages ex-
ceptions are normal values that can, e.g., be passed as arguments to functions.

5

In the setting of Mmt, more emphasis is placed on the head symbol of a
complex object anyway. Thus, it remains reasonably easy to distinguish errors
from non-error objects by inspecting the type or role of the head symbol.

5.2 Generalizations

Complex Mmt objects are more general than OpenMath objects in 2 ways:
by allowing 0 or more scopes in a binder and by adding the substitution γ.

Scopes The generalization to 0 or more scopes in binding objects has already
been proposed for future versions of OpenMath in [DK09, Hel13].

Substitution There are various situations where the substitution γ is useful.
For example, it can be used to represent reified substitutions (e.g., in an ex-
plicit substitution calculus), record values (which OpenMath does not support
naturally), or named arguments (instead or in addition to unnamed positional
arguments as used in OpenMath application objects).

Examples The following gives example uses for the various combinations of
substitution, context, and argument list in an complex Mmt object:

None: Objects of the form c(·; ·; ·) can represent the application of a function
to 0 arguments. For example, +(·; ·; ·) is the empty sum (which simplifies
to 0). This case is the reason why Mmt does not identify c and c(·; ·; ·)
(even though that would save one more production in the grammar).

Substitution: Objects of the form c(γ; ·; ·) can represent record values.

Context: Objects of the form c(·; Γ; ·) can represent record types, classes, or
dependent products.

Argument list: Objects of the form c(·; ·; ~E) can represent applications in the
usual way.

Substitution+Context: Objects of the form c(γ; Γ; ·) can represent matching
pairs of a context and a substitution out of it.

Substitution+Argument list: Objects of the form c(γ; ·; ~E) can represent ap-
plications with named arguments γ and unnamed positional arguments
~E.

Context+Argument list: Objects of the form c(·; Γ; ~E) can represent bindings
(possibly with multiple scopes) in the usual way.

Substitution+Context+Argument list: Objects of the form c(γ; Γ; ~E) can rep-
resent bindings where the binder takes additional parameters, e.g., as in
the integral example above.

6

Further Generalizations Some of the above examples would in fact be even
more natural in the absence of α-conversion. It may be interesting to investigate
whether α-conversion could be made optional in languages like OpenMath or
Mmt.

Another possible generalization is to allow the cases of the substitution γ,
the declarations in Γ, and the arguments in ~E to occur mixed. The scoping rule
would be that every variable is bound in anything to the right of it.

6 Literals

Literals present a challenge to knowledge representation languages like Open-
Math because there is no good canonical choice which fixed set of literals to
build into the language. OpenMath somewhat arbitrarily fixes 4 types of liter-
als. Thus, it lacks, e.g., bounded or arbitrary-base integer literals or character
literals (not to mention less mathematical types like URIs, dates, or colors).

Mmt merges all literals into a single production and keeps the set of literals
extensible by content dictionaries. This simplifies the language tremendously
while making it more general.

Every literal Lc(l) value occurs as a string l in the concrete syntax. The
symbol c has two functions. Firstly, it defines the mappings between the string
l and the actual values. This information should be specified in the content
dictionary that defines c. Secondly, it is the type of Lc(l) in the presence of a
type system.

For example, by using four fixed symbols OMI, OMF, OMSTRING, and OMB, we
can recover OpenMath literals as

I(i) ' LOMI(i′)

F(f) ' LOMF(f ′)

BA(b) ' LOMB(b′)

S(s) ' LOMSTRING(s′)

where l′ denotes an appropriate string-encoding of the literal value l.
Note that we could already use Z instead of OMI, but there seem to be no

corresponding symbols for the other 3 literal types in existing content dictio-
naries.

References

[DK09] J. Davenport and M. Kohlhase. Unifying Math Ontologies: A Tale
of Two Standards. In J. Carette, L. Dixon, C. Sacerdoti Coen, and
S. Watt, editors, Intelligent Computer Mathematics, pages 263–278.
Springer, 2009.

7

[Hel13] L. Hellström. Quantifiers and n-ary binders: an OpenMath standard
enhancement proposal. In C. Lange, D. Aspinall, J. Carette, J. Daven-
port, A. Kohlhase, M. Kohlhase, P. Libbrecht, P. Quaresma, F. Rabe,
P. Sojka, I. Whiteside, and W. Windsteiger, editors, Joint Proceedings
of the MathUI, OpenMath, PLMMS, and ThEdu Workshops and Work
in Progress at CICM. CEUR-WS.org, 2013.

[Koh06] M. Kohlhase. OMDoc: An Open Markup Format for Mathematical
Documents (Version 1.2). Number 4180 in Lecture Notes in Artificial
Intelligence. Springer, 2006.

[Rab13] F. Rabe. The MMT API: A Generic MKM System. In J. Carette,
D. Aspinall, C. Lange, P. Sojka, and W. Windsteiger, editors, Intelli-
gent Computer Mathematics, pages 339–343. Springer, 2013.

[RK13] F. Rabe and M. Kohlhase. A Scalable Module System. Information
and Computation, 230(1):1–54, 2013.

8

	1 Introduction
	2 Overview
	3 Scoping
	4 Attributions
	5 Complex Objects
	5.1 Limitations
	5.2 Generalizations

	6 Literals

